Section B: STAINLESS STEELS

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

MARTENSITIC STAINLESS STEEL CONSUMABLES

Stainless steels begin with about 12%Cr, leading to a series of **plain chromium steels** with up to 28%Cr. At 0.1%C the leanest alloy type 410 is just **martensitic**, but transformation hardening is suppressed by increasing chromium in types 430 and 446, which are essentially **ferritic**. Unfortunately, chromium also progressively raises the ductile-to-brittle transition temperature and restricts mechanical properties. However, this is controlled by adding some nickel to form the basis of 12-17%Cr martensitics with greatly improved properties, or 20-26%Cr duplex alloys (eg. data sheets B-60 to B-63).

This section deals with consumables giving compositions and properties close to those of the more common martensitic stainless base materials. All are **low hydrogen** types and most have rutile flux coverings for use in the flat and H-V positions, since welds are more common in plate, forgings and castings than fixed pipework. Post Weld Heat Treatment (PWHT) is mandatory, particularly for tempering the weld and HAZ of martensitic types. Procedural guidelines are given on relevant data sheets.

Excluding specialised proprietary creep-resistant 'super 12%Cr' **martensitic** stainless steels, the most common types can be broadly sub-divided into 3 groups: **plain chromium** (410, 420), chromium-nickel **soft-martensitic** (CA6NM or 410NiMo), and **precipitation hardening** (FV520, 17-4PH or 630). Raising carbon in 410 makes a much harder martensitic cutlery or tool steel type 420. Combining 0.15% carbon with 2% nickel turns ferritic 430 into a much stronger and tougher hybrid 431. Replacing carbon with more nickel in alloys of up to 17%Cr gives tougher and more ductile 'soft' martensitic steels with better weldability. The new **supermartensitics** are an improved extension of this group, which are currently welded using superduplex consumables.

Further additions of copper and other alloying enables these standard and proprietary alloys to be precipitation hardened during heat treatment, making them the strongest of all stainless steels with useful ductility and toughness. Unfortunately, as alloying is raised for strength or corrosion resistance, the as-cooled weld and HAZ may not fully transform to martensite without special PWHT. Not far beyond this limit lie austenitic stainless steels (data sheets B-30 to B-35).

Compared with austenitic stainless steels, procedures for martensitics are complicated by the need for hydrogen cracking control (particularly in thicker sections), and the need for PWHT which is most inconvenient for precipitation hardening types. To overcome the need for PWHT of precipitation hardening types, two simplified alternatives are suggested with some compromise in strength: use a leaner type 410NiMo with single PWHT, or duplex type (data sheet B-60, B-61 or B-62) and no PWHT. If required, the toughness of matching welds in alloy 410 can be improved with a special 13%Cr-1.5%Ni variant, which might also be considered for alloy 431. Again, a dissimilar type such as 309L (data sheet B-60) could be used without PWHT under some conditions.

Ferritic stainless steels are also produced with 12%Cr by lowering carbon and adding AI (alloy 405) or Ti (409). Hybrid utility ferritics with controlled martensite (such as Cromweld 3CR12) have emerged more recently; a dissimilar type 309L with no PWHT is usual for these. A specialised group of high purity 18-26% Cr+Mo superferritics are ideally welded with matching TIG filler, but rarely encountered. The remaining heat-resistant plain 17-28%Cr ferritics are welded with matching consumables and preferably given PWHT. Better as welded properties are obtained using a 25%Cr-5%Ni electrode, particularly for the bulk of heavier welds.

The lower strength and non-hardenability of ferritics makes them less prone but not immune to hydrogen cracking. With increasing chromium, ambient sensitivity to brittle cracking increases at notches or stress concentrations, so preheat is often advised for alloys with 17%Cr or more. Grain growth in the HAZ is also a limiting feature of weldment properties particularly ductility and toughness. The possibility of hot cracking in these and martensitic weld metals is poorly documented and in practice does not occur with the low impurity levels typically present.

DataSheet	Alloy	Process	Product AWS Classifications		EN / EN ISO Classifications
		MMA	13.RMP	E410-26	E 13 R 5 2
B-10	410	MIMA	13.1.BMP	(E410-15)	(E 13 B 5 2)
		TIG/MIG	12Cr	ER410	13
		MMA	13.4.Mo.L.R	E410NiMo-26	E 13 4 R 5 2
B-11	410NiMo	IVIIVIA	13.4.Mo.L.B	E410NiMo-25	E 13 4 B 6 2
B-11	4101011110	TIG/MIG	ER410NiMo	(ER410NiMo)	13 4
		FCW	Supercore 410NiMo	E410NiMoT1-1/4	T 13 4 P C/M 2
			FV520-1	-	-
D 13	17.4.PH/	MMA	17.4.Cu.RL	-	-
B-12	FV520	V520	FV520-B	-	-
		TIG/MIG	17-4PH	ER630	_

STANDARD AUSTENITIC STAINLESS STEEL CONSUMABLES

The stainless steels in most widespread use are **standard austenitic** types. They combine general ease of fabrication with useful properties over a wide range of temperatures. Low carbon and other grades, effectively immune to HAZ corrosion (once known as weld decay), are produced economically by continuous casting, a process which relies on a particular solidification mode that also guarantees welds their resistance to hot cracking.

Consumables in this section are intended to match austenitic stainless steels, and some are modified for special service properties. The majority of electrodes have rutile or acid-rutile flux coverings for ease of use, although improved basic types are gaining popularity for fixed pipework. Many types have family variants optimised for particular user requirements: **Supermet** for downhand and HV welds, **Ultramet** [rutile] for all-positional welding, **Ultramet P** [rutile] and **Ultramet B** [basic] types for pipewelding, **Vertamet** for higher speed vertical-down welding, and Supercore for flux cored wires.

For normal service **below about 400°C**, it is common to weld low carbon 304L with 308L consumables, and Ti-stabilised 321 or unstabilised 304 with Nb-stabilised 347 although either is suitable for any combination of these 19%Cr-9%Ni alloys. Similarly, 19%Cr-12%Ni-2.5%Mo type 316L can be used instead of 318 (Nb-stabilised 316) for 316 and 316Ti as well as parent 316L. **Above about 400°C** 'H' grades are usual, and these high temperature weld metals with >0.04% carbon for strength and stability are covered in Section C. For **cryogenic service**, see below.

Austenitics are not thermally hardenable and in practice are annealed by quenching. Hydrogen is soluble in austenite and does not cause weld cracking. Preheat is not needed or desirable except possibly to eliminate condensation. Interpass and heat input control is usually more important in thinner sections to minimise distortion, since austenitics have lower thermal conductivity and higher expansion rates than lower alloy steels. PWHT is rarely applied, although solution treatment may be specified in procedures for upgrading castings.

Two interrelated issues have generated voluminous literature in connection with welding austenitics: ferrite and hot cracking. Only a summary is possible here. Fully austenitic weld metal is potentially sensitive to solidification cracking during deposition as well as microfissuring in reheated beads of multipass welds. Its prevention is helped by low heat input, controlling impurities and silicon content and raising manganese (low silica rutile or basic fluxes are more suitable than acid rutile types here). However, when composition balance promotes some weld metal ferrite, and in particular when ferrite is the leading phase formed during solidification, abrupt resistance to cracking occurs - even in contaminated welds. The benefit of ferrite in weld deposits (typically 3-10FN in standard types) has been known for decades and is routinely measured and controlled in electrode production. Alternatively, to predict ferrite from composition, Schaeffler (later Espy), DeLong and latest WRC diagrams progressively improve in accuracy. However, the deeper significance of a primary ferritic solidification mode is shown in the Suutala diagram: above a Cr/Ni equivalent ratio of 1.5, few welds crack. The new WRC diagram shows this boundary. Since the same principle applies to parent material, the likelihood of cracking in autogenous or diluted welds can be checked - including those in free-machining grades with high sulphur or selenium.

An arbitrary ferrite limit of 8-12FN is common, although ASME III (nuclear code) permits up to 18FN and castings often exceed it to raise stress-corrosion resistance. However, for service down to -130° C, a maximum of about 8FN is desirable, or less than 5FN at -196° C. Fully austenitic welds are therefore toughest, but 308L and 316L consumables are available with 2-5FN **controlled ferrite** (suffix CF on data sheets B-37 & B-38) which meet the usual criterion of >0.38mm (fb mils) Charpy lateral expansion. Ferrite is also limited for two other service conditions. For **high temperature** service (300H products in Section C) control of ferrite, carbon and total alloying minimises formation of brittle intermetallic phases. To resist **nitric acid** or the Huey test, molybdenum-bearing weld metal such as 316L must contain no ferrite (suffix NF), because unlike 308L it is preferentially attacked. Modified fully austenitic 316L (data sheet B-33) is also useful for its cryogenic and non-magnetic properties.

ataSheet	Alloy	Process	Product	AWS Classifications	EN / EN ISO Classification	
onsumable	s for high st	rength low alloy ste	els requiring tensile str	engths from 620MPa u	p to 825MPa	
			Supermet 308L	E308L-17	E 19 9 L R 3 2	
		MMA	Ultramet 308L	E308L-16	E 19 9 L R 3 2	
		MMA	Ultramet 308LP	E308L-16	E 19 9 L R 1 1	
			Ultramet B308L	E308L-15	E 19 9 L B 4 2	
B-30	308L	TIG	308592	ER308L	W 19 9 L	
0.00	JUOL	MIG	Supermig 308LSi	ER308LSi	G 19 9 L Si	
		SAW	308592	ER308L	S 19 9 L	
			Supercore 308L	E308LT0-1/4	T 19 9 L R C/M 3	
		FCW	Supercore 308LP	E308LT1-1/4	T 19 9 L P C/M 2	
			Superoot 308L	R308LT1-5	TS308L-R 1	
		MMA	Ultramet 347	E347-16	E 19 9 Nb R32	
			Ultramet B347	E347-15	E 19 9 Nb B 4 2	
B-31	347	TIG/MIG/SAW	347596	ER347	19 9 Nb	
		MIG	Supermig 347Si	ER347Si	G 19 9 Nb Si	
		FCW	Supercore 347	E347T0-1/4	T19 9 Nb R C/M 3	
			Supermet 316L	E316L-17	E 19 12 3 L R 3 2	
		MMA	Ultramet 316L	E316L-16	E 19 12 3 L R 3 2	
B-32			Ultramet 316LP	E316L-16	E 19 12 3 L R 11	
			Ultramet B316L	E316L-15	E 19 12 3 L B 4 2	
	316L	TIG	316592	ER316L	W 19 12 3 L	
	JICE	MIG	Supermig 316LSi	ER316LSi	G 19 12 3 L Si	
		SAW	316592	ER316L	S 19 12 3 L	
			Supercore 316L	E316LT0-1/4	T 19 12 3 L R C/M 3	
		FCW	Supercore 316LP	E316LT1-1/4	T 19 12 3 L P C/M 2	
			Superoot 316L	R316LT1-5	TS316L-R 1	
		MMA	Ultramet 316NF	(E316LMn-16)	E 18 15 3 L R 3 2	
B-33	316NF		Ultramet B316NF	(E316LMn-15)	E 18 15 3 L B 4 2	
55 51010		TIG/MIG	ER316MnNF	ER316LMn	20 16 3 Mn L	
		FCW	Supercore 316NF	(E316LT0-4)	(T 18 16 5 N L R C/M 3)	
B-34	318	MMA	Supermet 318	E318-17	E 19 12 3 Nb R 3 2	
0.51	510	TIG/MIG/SAW	318596	ER318	19 12 3 Nb	
		MMA	Ultramet 317L	E317L-16	E 19 13 4 N L R 3 2	
B-35	317L	TIG/MIG	ER317L	ER317L	19 13 4 L	
		FCW	Supercore 317LP	E317LT1-1/4	(T 19 13 4 N L P C/M 2)	
		MMA	Ultramet 308LCF	E308L-16	E 19 9 L R 3 2	
			Ultramet B308LCF	E308L-15	E 19 9 L B 4 2	
B-37	308LCF	TIG	ER308LCF	ER308L	19 9 L	
		SAW	ER308LCF	ER308L	19 9 L	
		FCW	Supercore 308LCF	E308LT1-1/4J	T 19 9 L P C/M 2	
		MMA	Ultramet 316LCF	E316L-16	T 19 9 L P C/M 2	
			Ultramet B316LCF	E316L-15	E 19 12 3 L B 4 2	
B-38	316LCF	TIG	ER316LCF	ER316L	19 12 3 L	
		SAW	ER316LCF	ER316L	19 12 3 L	
		FCW	Supercore 316LCF	E316LT1-1/4J	(T 19 12 3 L P C/M 2)	

95

309L AND 309MO CONSUMABLES FOR DISSIMILAR WELDING

There are three basic variants of 23%Cr-12%Ni **type 309** consumables: unstabilised, Nb-stabilised and Mo-bearing. All are typically low carbon (< 0.04%C) with ferrite above 10FN and they are essentially over-alloyed versions of standard austenitic consumables 308L, 347 and 316L respectively. The original purpose of this over-alloying was to compensate for the effect of dilution when used as the first buffer layer in welding **stainless-clad mild steel**, for which they are still used. Choice of the appropriate variant is logically related to the alloy required for subsequent and finishing layers.

However, as a consequence of their versatility, types 309L and 309Mo have also become two of the most widely used consumables for **dissimilar metal welds**. A 309L type is most appropriate where one side of a joint is a stainless steel and the other side mild or low alloy steel. The 12%Cr utility ferritics are also usually welded with this type. Consumables of type 309Mo have considerably greater tolerance to dilution conferred by a higher ferrite content and for many applications they compete effectively with type 312 (data sheet E-22).

Nb-stabilised type 309Nb should be used more cautiously because the presence of niobium can make this weld metal more prone to hot cracking than the others if dilution conditions lead to a microstructure without ferrite. As a result of the embrittlement of ferrite, PWHT is avoided for 309L types unless some reduction of ductility or toughness is acceptable. In conjunction with higher carbon base materials, PWHT can also intensify carbide precipitation at the fusion boundary. Again, there are reasons to suspect that the presence of Nb may exaggerate this effect.

For the above and other reasons, 309L types are not used in weldments for service at temperatures above about 300°C, or lower than about –50°C. In these cases, nickel-base weld metal is used (see data sheets D-10 and D-11). A specially controlled type (suffix CF) is available to match as closely as possible the heat-resisting parent alloy type 309 (data sheet C-21). Also see the 308Mo (armour welding), 307 and 312 types in Section E for general purpose dissimilar welding applications.

DataSheet	Alloy	Process	Product	AWS Classifications	EN / EN ISO Classifications
			Supermet 309L	E309L-17	E 23 12 L R
		MMA	Ultramet 309L	E309L-16	E 23 12 L R
		MMA	Ultramet 309LP	E309L-16	E 23 12 L R
			Ultramet B309L	E309L-15	E 23 12 L B
B-50	309L	TIG	309S92	ER309L	W 23 12 L
		MIG	Supermig 309LSi	ER309LSi	G 23 12 L Si
		SAW	309592	ER309L	S 23 12 L
		FCW	Supercore 309L	E309LT0-1/4	T 23 12 L R
		FLVV	Supercore 309LP	E309LT1-1/4	T 23 12 L P
			Supermet 309Mo	E309LMo-17	E 23 12 2 L R
		MMA	Ultramet B309Mo	E309LMo-15	E 23 12 2 L B
B-51	309Mo		Vertamet 309Mo	E309LMo-17	E 23 12 2 L R
10-01	3031010	TIG/MIG/SAW	ER309Mo	(ER309Mo)	23 12 2 L
		5014	Supercore 309Mo	E309LMoT0-1/4	T 23 12 2 L R C/M 3
		FCW	Supercore 309MoP	E309LMoT1-1/4	T 23 12 2 L P C/M 2
B-53	309Nb	MMA	Ultramet 309Nb	E309Cb-16	BS: 23.12.Nb.R

SUPERAUSTENITIC STAINLESS STEEL CONSUMABLES LEAN DUPLEX, DUPLEX AND SUPERDUPLEX STAINLESS STEEL CONSUMABLES

Although duplex and superaustenitic stainless steels are distinct alloy groups, they are both designed to resist severe corrosion and in some cases compete with each other. The duplex types have considerably higher strength. All have greatly increased resistance to stress-corrosion compared with the standard austenitics. High resistance to general corrosion and especially pitting in high chloride media is obtained with increased levels of chromium, molybdenum and nitrogen.

Duplex types are sub-divided into three groups based on their typical pitting resistance equivalent, PRE (%Cr + 3.3%Mo + 16%N). **Standard duplex** types with typically 22%Cr have a PRE of around 35 and **superduplex** types with typically 25%Cr have a PRE above 40. Parent material composition and processing is designed to give a microstructure balanced with 50:50 ferrite and austenite. Weld metals have similar composition except that nickel is increased to control ferrite in the as-welded condition within a desirable range of 25-60% for optimum mechanical and corrosion properties. Nitrogen additions also play an essential role in promoting austenite re-formation in weld metal and parent HAZ, as well as raising the pitting resistance.

The third group of duplex alloys, the **lean duplex** types, have a PRE of about 25 with corrosion performance comparable to 316L so they are generally not used in highly corrosive environments. The main use has been for structural applications where the high strength is beneficial. The lean duplex stainless steels are so called because some of the higher cost alloying, particularly Ni, is reduced to lower the cost. The lean duplex types can be welded with standard duplex consumables but matching lean duplex consumables are also offered (data sheet B-59).

In welding standard duplex alloys in general fabrication, procedures similar to the standard austenitics are usually satisfactory. However, these alloys are frequently used for **pipework** in which root corrosion performance is critical and this requires more stringent procedural control. Such controls are even more important for the superduplex alloys. Technical profiles are available which give guidance on these issues.

The **superaustenitic** stainless steels occupy a region of alloying between the standard austenitics and nickel-base alloys. (In nickel base alloys, nickel rather than iron forms the major balance of alloying). Since these alloys are fully austenitic, controlled interpass temperatures and heat input are desirable to minimise any possibility of hot cracking. Note that although a matching electrode type 20.18.6.Cu.R is available for the most common 6%Mo superaustenitic type S31254, this is only used when post-weld solution treatment is carried out. Otherwise S31254, and other superaustenitic alloys, are normally welded with overmatching nickel base types (Section D).

DataSheet	Alloy	Process	Product	AWS Classifications	EN / EN ISO Classifications
		MMA	Ultramet 904L	E385-16	E 20 25 5 CuNL R
B-40	904L	IMIMA	Ultramet B904L	E385-15	E 20 25 5 CuNL B
		TIG/MIG	20.25.4.Cu	ER385	20 25 5 CuNL
B-41	20	MMA	E320LR-15	E320LR-15	-
B-42 825		MMA	E825L-15	-	DIN: EL-NiCr28Mo
		TIG/MIG	82-50	ERNiFeCr-1	BS: NA41
B-45	310L	MMA	25.20.LR	-	-
B-46	310MoLN	MMA	Ultramet B310MoLN	-	E 25 22 2 N L B
B-47	Matching 6%Mo	MMA	20.18.6.Cu.R	-	-
D FO	Loop duploy	MMA	Ultramet 2304	-	-
B-59 Lean duplex		FCW	Supercore 2304P	=	=
B-60	Duplex		Supermet 2205	-	=
		MMA	Ultramet 2205	E2209-16	E 22 9 3 N L R
			Supermet 2205AR	E2209-17	E 22 9 3 L N R
			2205XKS	E2209-15	E 22 9 3 N L B
		TIG/MIG/SAW	ER329N	ER2209	22 9 3 N L
		MCW	Supercore M2205	EC2209	T 22 9 3 N L M12 3
		5014	Supercore 2205	E2209T0-1/4	T 22 9 3 N L R C/M 3
		FCW	Supercore 2205P	E2209T1-1/4	T 22 9 3 N L P C/M 2
	7	MMA	Zeron® 100XKS	E2595-15	E 25 9 4 N L B
B-61	Zeron® 100 superduplex	TIG/MIG/SAW	Zeron® 100X	ER2594	25 9 4 N L
	superuupiex	FCW	Supercore Z100XP	E2594T1-4	TS 2594-F M211
		MMA	2507XKS	E2594-15	E 25 9 4 N L B
		MMA	Ultramet 2507	E2594-16	E 25 9 4 N L R
B-62	2507	TIG	2507	ER2594	W 25 9 4 N L
	superduplex	EC)4/	Supercore 2507	E2594T0-4	T 25 9 4 N L R M21 3
		FCW	Supercore 2507P	E2594T1-4	T 25 9 4 N L P M21 2
D (2)	2552	MMA	Supermet 2506Cu	E2553-16	E 25 9 4 CuNL R
B-63	2553	FCW	Supercore 2507Cu	-	-
	Matching		Supermet 2506	-	BS: 25.6.2.R
-	composition	MMA	Supermet 2507Cu	-	-

NUCLEAR APPLICATIONS

STAINLESS STEELS

The next group consumables are intended for nuclear power applications. There are two types firstly those with an (N) suffix designed to meet the requirements of the French RCC-M Nuclear Construction Code (data sheets B-80, B-81 and B-83). The second group are the Nitric Acid Grade (NAG) 308L consumables designed for spent nuclear fuel reprocessing applications (data sheet B-88)

DataSheet	Alloy	Process	Product AWS Classifications		EN / EN ISO Classifications
		MMA	Ultramet 308L(N)	E308L-16	E 19 9 L R
B-80	308L(N)		Ultramet B308L(N)	E308L-15	E 19 9 L B
			308592(N)	ER308L	W 19 9 L
		MMA	Ultramet 316L(N)	E316L-16	E 19 12 3 L R
B-81	316L(N)		Ultramet B316L(N)	E316L-15	E 19 12 3 L B
		TIG	316S92(N)	ER316L	W 19 12 3 L
		MMA	Ultramet 309L(N)	E309L-16	E 23 12 L R
B-83	309L (N		Ultramet B309L(N)	E309L-15	E 23 12 L B
		TIG	309592(N)	ER309L	W 23 12 L
D 00	NAC	MMA	NAG 19.9.L.R	E308L-16	E 19 9 L R
B-88	NAG	TIG	NAG 19.9.L	ER308L	W 19 9 L

Data Sheet B-10

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

12%Cr MARTENSITIC STAINLESS

ALLOY TYPE

12%Cr (410) martensitic stainless steel; the 13.1.BMP electrode also has 1.5%Ni.

MATERIALS TO BE WELDED

	wrought	cast
ASTM	410, 403	A487 grade CA15
UNS	S41000, S40300	
DIN	1.4006 (X10Cr13)	1.4006 (G-X10Cr13)
	1.4000, 1.4024	
BS	410S21 (En56A)	410C21
	403S17	

The 13.1.BMP with 1.5%Ni is also suitable for ASTM A487 CA15M and DIN 1.4008 (G-X8CrNi13).

APPLICATIONS

These consumables are designed for welding wrought or cast martensitic 12%Cr (type 410) stainless steel. Fabrication welds of matching composition such as this must be tempered by appropriate PWHT, owing to high hardness (-450HV) and low ductility in the as-welded condition. Conventional 410 has variable toughness but following PWHT the 13.1.BMP electrode with 1.5%Ni has good impact properties down to -10° C or lower depending on the heat treatment schedule.

Plain 12%Cr steels are the most simple and economic alloys with stainless properties. Variants with Ti [409], Al [405] or low carbon [410S] are more or less fully ferritic with typically lower strength than type 410. These types, and the newer «utility ferritics», are normally welded without PWHT using 309/309L consumables [data sheet B-50]. The same applies to type 410 when PWHT is not practicable.

Type 410 contains just sufficient carbon to enable air-hardening transformation to a predominantly martensitic microstructure. Structural properties below ambient are limited by its relatively high ductilebrittle transition temperature (particularly weldments), and up to about 550°C by its modest creep resistance. It has useful resistance to general corrosion in nonaggressive media, sulphide-induced SCC in sour crude oil service, and oxidation up to about 800°C.

Typical applications include hydrocrackers, reaction vessels, distillation plants and associated pipework in refineries; furnace parts, linings; surfacing run-out rolls in steel mills; cast valve bodies, turbine parts and burner nozzles.

MICROSTRUCTURE

In the PWHT condition the microstructure consists of tempered martensite with some retained ferrite.

WELDING GUIDELINES

Preheat of 150-250°C is required for heavier sections. Following welding, components should be cooled to room temperature before PWHT. Weld metal and HAZ's have poor ductility and toughness in the as-welded condition, careful handling is recommended prior to PWHT to minimise physical shock.

PWHT

Plain 410 - A typical industrial PWHT following welding for plain 410, consists of slowly cooling to room temperature to allow full transformation to take place (range is Ms-350°C Mf-100°C), then temper at 680-760°C followed by air cool. To ensure <22HRC (NACE) in the weld area, PWHT at 745°C is preferred.

131.BMP – The optimum properties are obtained after PWHT at around 700°C, close to the Ac1 temperature for this weld metal, which (due to the added nickel) has a lower Ac, than plain 410. If needed PWHT time can be extended but higher temperatures may cause re-hardening with fresh martensite formation on cool-out. Superior toughness can be achieved with a double temper (cool to ambient between cycles) and this is recommended to conform to NACE, 22HRC maximum.

PRODUCTS AVAILABLE

Process	Product	Specification
MMA	13.RMP	AWS E410-26
	13.1.BMP	DIN E 13 1 MPB
TIG/MIG	12Cr	AWS ER410

13.RMP

RUTILE MMA ELECTRODE FOR WELDING 410

PRODUCT DESCRIPTION

Rutile metal powder MMA electrode made on pure low carbon core wire.

Moisture resistant coating giving very low weld metal hydrogen levels.

Diameters above 3.2mm are not recommended for positional welding.

Recovery is about 130% with respect to core wire, 65% with respect to whole electrode.

AWS A5.4M E410-26 QW432	PECIFICATIONS		ASME IX O
BS EN ISO 3581 E 13 R 5 2	AWS A5.4M	E410-26	
	3S EN ISO 3581	E 13 R 5 2	QW432 QW442

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu
min.						11.0			
max.	0.08	1.0	0.90	0.025	0.030	13.5	0.60	0.5	0.50
Typical	0.06	0.5	0.30	0.010	0.015	11.5	0.4	0.2	0.05

ALL-WELD MECHANICAL PROPERTIES

	850	0°C/2h *	745°C/1h **		
After PWHT	Min.	Typical	Min.	Typical	
Tensile strength (MPa)	480	520	520	700	
0.2% proof strength (MPa)	250	270		610	
Elongation (%) 4d		36	20	21	
5d	20	34		18	
Reduction of area %		52		59	

* BS & BS EN PWHT: 840-870°C for 2 hours, furnace cool to 595°C at 55°C/h. max. Air cool to ambient. This gives a relatively low strength condition.

** AWS PWHT: 730-760°C for 1 hour, furnace cool to 315°C at 60°C/h max., air cool to ambient. This gives a higher strength tempered condition more representative of normal fabrication welds.

OPERATING PARAMETERS, DC +VE OR AC (OCV: 70V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	70	80	100	140
max. A	110	140	180	240
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	12.6	14.1	14.1	16.8
Pieces/carton	609	378	219	150

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 300 - 350°C/1-2h to restore to as-packed condition. Maximum 420° C, 3 cycles, 10h total.

Storage of redried electrodes at 100 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical:

Fe	Mn	Ni	Cr	Cu	Мо	V	F	OES (mg/m3)
20	2	<0.5	3	<0.2	<0.1	<0.1	18	1.7

13.1.**BMP**

13%CR-1.5%NI BASIC MMA ELECTRODE FOR WELDING 410

PRODUCT DESCRIPTION

Basic low hydrogen metal powder MMA electrode made on pure low carbon core wire.

Moisture resistant coating giving very low weld metal hydrogen levels.

Diameters above 3.2mm are not recommended for positional welding.

Recovery is about 130% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS			ASME IX QUALIFICATION
AWS A5.4 (E410-15)		Normat classifications	QW432 F-No 1
BS EN ISO 3581 (E 13 B 5 2)	Nearest classifications	QW442 A-No 6	

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Mo *	Cu
Min.	0.02	0.4				11.0	1.0	0.15	
Max.	0.06	1.0	0.50	0.025	0.030	14.0	2.0	0.50	0.5
Typical	0.04	0.7	0.25	0.01	0.02	13	1.5	0.3	0.05

Molybdenum is controlled to satisfy minimum requirements for ASTM A487 CA15M castings (0.15-1.0% Mo).

ALL-WELD MECHANICAL PROPERTIES

Typical after PWHT		Min.	790°C/5h + 700°C/5h	680°C/2h + 620°C/2h
Tensile strength (MPa)		620	655	760
0.2% proof strength (MPa)		450	455	685
Elongation (%)	4d	18	26	20
-	5d	15	23	17
Reduction of area %			70	67
Impact ISO-V(J)	+20°C		105	
	-10°C		90	60
Hardness (HRC)		<22 **	18	19

Tensile properties based on ASTM CA15 and CA15M castings.

Specifications for wrought grades vary in tensile strength 415-700MPa.

** For conformance to NACE a double temper is mandatory.

OPERATING PARAMETERS, DC +VE OR AC (OCV: 70V MIN)

	, DC - VE OK AC (OC V. 7	ov ming		
Diameter (mm)	2.5	3.2	4.0	5.0
min. A	70	80	100	140
max. A	110	140	180	240
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	350	380	450	450
kg/carton	12.6	13.5	16.5	16.5
Pieces/carton	570	375	225	144

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 300 – 350°C/1-2h to restore to as-packed condition. Maximum 420° C, 3 cycles, 10h total.

Storage of redried electrodes at 100 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical:

Fe	Mn	Ni	Cr	Cu	Мо	V	F	OES (mg/m ³)
20	2	<0.5	3	<0.2	<0.1	<0.1	18	1.7

SOLID WIRE FOR WELDING 410

PRODUCT DESCRIPTION

Solid wire for TIG & MIG.

ASME IX Q
QW432
QW442

CHEMICAL COMPOSITION (WIRE WT %)

	C *	Mn	Si	S	Р	Cr	Ni	Мо	Cu
Min.	0.06		0.25			12.0			
Max.	0.12	0.6	0.50	0.02	0.03	13.5	0.3	0.3	0.3
Typical	0.1	0.4	0.3	0.01	0.02	12.5	0.2	0.03	0.2

* BS 2901: Pt2 requires 0.09-0.15%C.

ALL-WELD MECHANICAL PROPERTIES

Turnian Lundware of the R DW/UT		MIG: Ar+20%CO
Typical values after PWHT	740°C/1h (AWS)	² 740°C/3h
Tensile strength (MPa)	695	675
0.2% proof strength (MPa)	530	510
Elongation (%) 4	d 22	20
5	d 19	18
Reduction of area %	50	50
Impact ISO-V(J) +	20°C <20	20
Hardness cap/mid +	V 225/230	215/220
F	RC	18/21

TYPICAL OPERATING PARAMETERS

	Shielding	Current	Diameter (mm)	Parameters
TIG	ArgonM	DC-	2.4	100A, 12V
MIG	Ar / 1-3%0, or Ar / 3-20%C0, **	DC+	1.2	280A, 28V

* Also required as a purge for root runs.

** Most economic gas is Ar-20%CO₂. This gas provides the highest resistance to weld metal porosity and carbon content typically not exceeding 0.12%.

PACKAGING DATA

Diameter (mm)	1.2	1.6	2.4
TIG		2.5 kg tube	2.5 kg tube
MIG	15kg spool	15kg spool	

FUME DATA

MIG fume composition (wt%) (TIG fume negligible)

Fe	Mn	Cr ³	Ni	Cu	OES (mg/m3)
55	4	8	<0.1	<0.5	5

Data Sheet B-11

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

410NiMo MARTENSITIC STAINLESS

ALLOY TYPE

12%Cr-4.5%Ni-0.5%Mo (410NiMo) soft martensitic alloy.

MATERIALS TO BE WELDED

	wrought	cast
ASTM	F6NM	CA6NM
UNS	S41500	
BS EN / DIN	1.4313	G-X5CrNi 13 4
BS		425C11
AFNOR		Z6 CND 1304-M

APPLICATIONS

High strength (>760MPa) martensitic stainless steel with better resistance to corrosion, hydro-cavitation, sulphide-induced SCC, and good sub-zero toughness when compared with plain 12%Cr steels (e.g. type 410/ CA15).

Weld metal of this type greatly overmatches the strength of equivalent parent material and is remarkably resistant to softening during PWHT. These properties can be exploited for welding martensitic precipitation-hardening alloys if corrosion conditions are compatible with lower alloy weld metal, with the advantage of a single PWHT at 450-620°C for tempering. The 410NiMo consumables are also used for **overlaying** mild and CMn steels.

13%Cr-4%Ni alloys are used in cast or forged form for hydraulic turbines, valve bodies, pump bowls, compressor cones, impellers and high pressure pipes in power generation, offshore oil, chemical and petrochemical industries.

MICROSTRUCTURE

In the PWHT condition the microstructure consists of tempered martensite with some retained austenite.

WELDING GUIDELINES

Preheat-interpass range of 100-200°C is recommended to allow martensite transformation during welding. Cool to room temperature before PWHT.

PWHT

For maximum resistance to sulphide-induced SCC in sour oil conditions NACE MR0175 specifies a hardness of <23HRc. This is often difficult to achieve because weld metal and HAZ are very resistant to softening by PWHT. A double temper for 5-10h is necessary. Common practice is 675°C/10h + 605° C/10h with intermediate air cool to ambient. Recent work indicates 650°C + 620°C is optimum. and that intermediate air cooling to ambient or lower is essential. Another authority suggests raising the first PWHT cycle for full austenitisation anneal at 770°C/2h prior to final temper. Control of distortion may be more critical in this case. In the case of the Supercore 410NiMo flux cored wire it has not been possible to reduce the hardness to 23HRC irrespective of the PWHT carried out.

If 410NiMo consumables are considered for welding plain 12Cr martensitic stainless steels such as type 410 or CA15, the PWHT should not exceed about 650°C unless a second temper at 590-620°C is applied.

PRODUCTS AVAILABLE

Process	Product	Specification
ММА	13.4.Mo.L.R	AWS E410NiMo-26
MIMA	13.4.Mo.L.B	AWS E410NiMo-25
TIG/MIG	ER410NiMo	AWS ER410NiMo
FCW	Supercore 410NiMo	AWS E410NiMoT1-1/4

13.4.Mo.L.R

RUTILE MMA ELECTRODE FOR 410NiMo

PRODUCT DESCRIPTION

Rutile metal powder type made on pure low carbon core wire.

F410NiMo-26

E 13 4 R 5 2

Moisture resistant coating giving very low weld metal hydrogen levels.

Diameters above 3.2mm are not recommended for positional welding.

Recovery is about 130% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M

BS EN ISO 3581

AS	ASME IX QUALIFICATION				
(QW432	F-No 1			
(QW442	A-No 6			

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu
min.						11.0	4.0	0.40	
max.	0.06	1.0	0.90	0.025	0.03	12.5	5.0	0.70	0.50
Typical	0.03	0.8	0.25	0.01	0.01	12	4.5	0.6	0.05

ALL-WELD MECHANICAL PROPERTIES

Typical properties		Min.	PWHT (1)	As-welded (2)
Tensile strength (MPa)		760	940	1000
0.2% proof strength (MPa)		500	695	780
Elongation (%)	4d	15	17	4.5
	5d	15	16	3
Reduction of area %			45	10
Impact ISO-V(J)	+ 20°C		45	27
	- 40°C		35	13
	- 60°C		30	8
Hardness (HV)			270-300	350

(1) AWS & BS PWHT: 595-620ºC for 1 hour, air cooled. See front page for details on PWHT.

(2) This weld metal is not usually recommended for use in the as-welded condition, except for surfacing applications where a hardness of 330-400HV is useful.

OPERATING PARAMETERS, DC +VE OR AC (OCV: 70V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	70	80	100	140
max. A	110	140	180	240
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	350	350	450	450
kg/carton	12.6	15.0	18.0	16.8
Pieces/carton	570	363	240	171

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 300 – 350°C/1-2h to restore to as-packed condition. Maximum 420°C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical:

Fe	Mn	Ni	Cr	Cu	Мо	V	F	OES (mg/m ³)
18	2	0.5	3	<0.2	<0.2	<0.2	18	1.7

13.4.Mo.L.B

BASIC MMA ELECTRODE FOR WELDING 410NiMo

PRODUCT DESCRIPTION

Basic metal powder type made on pure low carbon core wire.

Moisture resistant coating giving very low weld metal hydrogen levels.

Diameters above 3.2mm are not recommended for positional welding.

Recovery is about 130% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS			ASME IX QUALIFICATION
AWS A5.4M	E410NiMo-25*	* 2005 Edition	QW432 F-No 1
BS EN ISO 3581	E 13 4 B 6 2		QW442 А-Nоб

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu
Min.						11.0	4.0	0.40	
Max.	0.06	1.0	0.90	0.025	0.03	12.5	5.0	0.70	0.50
Typical	0.03	0.7	0.25	0.01	0.01	12	4.5	0.6	0.05

ALL-WELD MECHANICAL PROPERTIES

Min.	PWHT (1)
760	900
500	650
15	17
15	16
	45
	50
	760 500 15 15

(1) AWS PWHT: 595-620°C for 1 hour, air cooled. See front page for details on PWHT.

OPERATING PARAMETERS, DC +VE

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	70	80	100	140
max. A	110	140	180	240

PACKAGING DATA

Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	350	350	450	450
kg/carton	12.6	14.1	18.0	17.1
Pieces/carton	570	330	261	156

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 300 - 350°C/1-2h to restore to as-packed condition. Maximum 420°C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical:

Fe	Mn	Ni	Cr	Cu	Мо	V	F	OES (mg/m ³)
18	2	0.5	3	<0.2	<0.2	<0.2	18	1.7

ER410NiMo

SOLID WIRE FOR WELDING 410NiMo

PRODUCT DESCRIPTION

Solid wire for TIG and MIG.

SPECIFICATIONS	SPECIFICATIONS			
AWS A5.9M	(ER410NiMo)	Does not always strictly conform, see composition.	QW432	F-No 6
BS EN ISO 14343-A	13 4		QW442	А-No б
BS EN ISO 14343-B	(SS410NiMo)			

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn *	Si *	S	Р	Cr	Ni	Мо	Cu
Min.		0.4				11.0	4.0	0.4	
Max.	0.05	1.0	0.60	0.02	0.03	12.5	5.0	0.7	0.3
Typical	0.02	0.8	0.4	0.005	0.015	12.3	4.5	0.5	0.1
* \\\\/S requ	iros 0.694M	n may and OP	004Si may						

AWS requires 0.6%Mn max and 0.50%Si max.

ALL-WELD MECHANICAL PROPERTIES

Typical values after PWHT 610°C/1	lh:	TIG	
Tensile strength (MPa)		890	
0.2% proof strength (MPa)		850	
Elongation (%)	4d	23	
	5d	20	
Impact ISO-V(J)	0°C	90	
	-50°C	60	
Hardness cap/mid	HRC	25-30	
	HV	300	

TYPICAL OPERATING PARAMETERS

	Shielding	Current	Diameter (mm)	Parameters
TIG	Argon*	DC-	2.4	100A, 12V
MIG	Ar with 1-2%0, or 1-5%C0, **	DC+	1.2	220A, 28V

* Also required as a purge for root runs.

** Proprietary gas mixtures with <5%CO, are also suitable.

PACKAGING DATA

Diameter (mm)	1.2	1.6	2.0	2.4
TIG		2.5 kg tube	To order	2.5 kg tube
MIG	15kg spool			

FUME DATA

MIG fume composition (wt %) (TIG fume negligible)

Fe	Mn	Cr ³	Ni	Мо	Cu	OES (mg/m ³)
54	5	8	3.2	<0.5	<0.5	5

STAINLESS STEELS

SUPERCORE 410NiMo

ALL - POSITIONAL FLUX CORED WIRE FOR WELDING 410NiMo

PRODUCT DESCRIPTION

All-positional rutile flux cored wire made on a high purity stainless steel strip Metal recovery about 90% with respect to wire.

SPECIFICATIONS		ASME IX Q	UALIFICATION
AWS A5.22M	E410NiMoT1-1/4	QW432	F-No 1
BS EN ISO 17633-A	T 13 4 P C/M 2	QW442	A-No 6
BS EN ISO 17633-B	TS410NiMo-FB1		

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Co
Min.						11.0	4.0	0.4		
Max.	0.06	1.0	1.0	0.025	0.030	12.5	5.0	0.7	0.3	0.05
Typical	0.03	0.7	0.4	0.005	0.017	11.8	4.5	0.5	0.03	0.03

ALL-WELD MECHANICAL PROPERTIES

ypical values		Min.	610°C/1h	610°C/10h	650°C/10h +620°C/10h
Tensile strength (MPa)		760	940	870	
0.2% proof strength (MPa)		500	850	700	
Elongation (%)	4d	15	20	23	
	5d	15	17	19	
Reduction of area (%)			50	55	
Impact ISO-V(J)	+20°C		45	50	50
	-40°C		30	40	35
Hardness	HV		330	310	310
	HRC		31	27	28
AVA/C DVA/UT - ED2 62190/1 hour		UT - E00 6200C/2 ho	urc		

AWS PWHT = 593-621°C/1 hour. BS EN PWHT = 580-620°C/2 hours.

OPERATING PARAMETERS

Shielding gas Ar-20%CO₂ or 100% CO₂ at 20-25l/min.

Current DC+ve parameters as below (for 100%CO, increase voltage by 1-3V):

Diameter (mm)	range	typical	stickout
1.2	150-280A, 25-32V	180A, 29V	15-25mm
1.6	200-350A, 26-34V	260A, 30V	15-25mm
1.6	200-350A, 26-34V	260A, 30V	15-25mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition, wt %

Fe	Mn	Cr	Ni	Мо	Cu	OES (mg/m ³)
18	3	2.5	1	0.2	< 0.5	2

107

Data Sheet B-12

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS

ALLOY TYPE

High strength martensitic precipitation hardening stainless steels.

MATERIALS TO BE WELDED

FV520 Types:

ASTM

A564, A693, A705; Grade XM-25

UNS

S45000

BS

3146 Grade ANC 20. 'S' grades; 2S.143; 3S.144; 3S.145

Proprietary

FV520B (Firth Vickers), Custom 450 (Carpenter)

630 / 17.4.PH Types:

ASTM

A564; Grade 630, A747; CB7Cu-1 (cast)

UNS

S17400

BS EN

10088-2; X5CrNiCuNb 16-4 (1.4542)

DIN

1.4548, 1.4549

Proprietary

17-4PH (Armco Steel), Custom 630 (Carpenter)

APPLICATIONS

Used for welding very high strength martensitic stainless steels, precipitation hardened by additions of copper. Strength can be up to three times that of standard 300 series austenitic stainless steels.

The FV520/450 type alloys have corrosion resistance comparable to 304 stainless steel. The 630/17-4PH types, with no Mo and higher carbon, do not have such good resistance to intergranular and pitting corrosion as the FV520/450 types.

Applications include pump shafts, impellers, hydraulic equipment used in oil and gas industries, petrochemical, marine and nuclear engineering.

MICROSTRUCTURE

In the PWHT condition the microstructure consists of precipitation hardened tempered martensite with some retained austenite.

WELDING GUIDELINES

Preheat not usually necessary for thickness up to 15mm, for thicker restrained sections, a preheatinterpass temperature range of 100-200°C is recommended. Temperatures above 200°C will suppress martensite transformation with consequent microstructural coarsening.

PWHT

When matching composition consumables are used for welding these materials a PWHT must be carried out. Normal practice is for the materials to be used in the over-aged condition. PWHT for over-ageing consists of: 750°C for 2 hours, air cool to 15°C; followed by 550°C for 2 hours and air cool.

ADDITIONAL INFORMATION

On cooling the weld metal transforms from austenite to martensite (Ms) below about 250°C, but a significant fraction of austenite is still retained at ambient temperature. Since sub-zero cooling is impractical, this austenite is destabilised by annealing at 750-850°C. Carbide precipitation in the austenite raises its Ms temperature to enable complete transformation when cooled, ensuring more effective tempering and ageing during the second PWHT cycle. Omission of the inconvenient first PWHT cycle may give properties with greater batch variability. The use of 410NiMo (B-11) allows a simplified PWHT to be used, and when PWHT is not possible 2205 duplex (B-60) or superduplex (B-61 & B-62) consumables may allow PWHT to be avoided without compromising mechanical properties too much.

PRODUCTS AVAILABLE

Process	Product	Specification
ММА	FV520-1	
MIMA	17.4.Cu.R	(AWS E630-16)
TIG	FV520B	
110	17-4PH	AWS ER630
MCW	Metcore FV520	

FV520-1

MMA ELECTRODE FOR FV520 BASE MATERIAL

PRODUCT DESCRIPTION

Rutile metal powder coating on pure low carbon steel core wire. Moisture resistant coating gives very low weld metal hydrogen levels. Diameters above 3.2mm are not recommended for positional welding. Recovery is about 130% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

There are no national specifications for this electrode.

ASME IX QU	ALIFICATION
QW432	F-No
QW442	A-No

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb
min.		0.4	0.2			13.0	4.5	1.2	1.2	0.15
max.	0.05	1.0	0.5	0.030	0.030	15.5	6.0	2.0	2.0	0.5
Typical	0.03	0.6	0.3	0.010	0.015	14	5	1.5	1.6	0.3

ALL-WELD MECHANICAL PROPERTIES

		A 144	
Typical properties PWHT	Aged *	Over-aged **	
Tensile strength (MPa)	1230	980	
0.2% proof strength (MPa)	1110	890	
Elongation (%) 4d		16	
5d	10	15	
Reduction of area (%)	30	37	
Hardness (HV)	420	345	

* 850°C/2 hours, air cool to 15°C + 450°C/4 hours, air cool. Not recommended for structural work.

** 750°C/2 hours, air cool to 15°C + 550°C/2 hours, air cool. More commonly applied PWHT.

OPERATING PARAMETERS, DC +VE OR AC (OCV: 70V MIN)

or Envirtual Annuel End, be the orthogoeth of Filing					
Diameter (mm)	2.5	3.2	4.0		
min. A	70	80	100		
max. A	110	140	180		
PACKAGING DATA					
Diameter (mm)	2.5	3.2	4.0		
Length (mm)	350	350	350		
kg/carton	13.5	14.4	13.5		
Pieces/carton	630	345	240		

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 300 - 350°C/1-2h to restore to as-packed condition. Maximum 420° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical:

Fe	Mn	Ni	Cr	Cu	Мо	V	F	OES (mg/m3)
15	3	0.5	4	0.8	0.2	<0.1	18	1.2

17.4.Cu.R

MMA ELECTRODE FOR 17-4PH BASE MATERIAL

PRODUCT DESCRIPTION

Rutile metal powder coating on pure low carbon steel core wire. Moisture resistant coating gives very low weld metal hydrogen levels. Diameters above 3.2mm are not recommended for positional welding. Recovery is about 130% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

There are no national specifications for this electrode, but is is similar to AWS A5.4 E630-16

ASME	IX QUA	ALIFICATION	

QW432 F-No --OW442 A-No --

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu
Min.						14.0	3.5		1.5
Max.	0.10	1.0	0.8	0.030	0.030	16.5	4.5	0.5	2.5
Typical	0.02	0.7	0.25	0.01	0.01	15	4	0.2	2

ALL-WELD MECHANICAL PROPERTIES

Over-aged *	
1035	
635	
10	
9	
24	
330	
	1035 635 10 9 24

* 750°C/2 hours, air cool to 15°C + 550°C/2 hours, air cool.

OPERATING PARAMETERS, DC +VE OR AC (OCV: 70V MIN)

Diameter (mm)	2.5	3.2	4.0
min. A	70	80	100
max. A	110	140	180

PACKAGING DATA

PACKAGING DATA			
Diameter (mm)	2.5	3.2	4.0
Length (mm)	350	350	450
kg/carton	12.3	15.0	18.6
Pieces/carton	528	345	246

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 300 – 350°C/1-2h to restore to as-packed condition. Maximum 420° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical:

Fe	Mn	Ni	Cr	Cu	Мо	v	F	OES (mg/m3)
15	3	0.5	4	0.8	0.2	<0.1	18	1.2

FV520B

SOLID TIG WIRE FOR WELDING FV520 STAINLESS STEEL

PRODUCT DESCRIPTION

Solid wire for TIG welding.

SPECIFICATIONS	ASME IX QUALIFICATION			
There are no national specifications for this electrode.	QW432	F-No		
	QW442	A-No		
CHEMICAL COMPOSITION (WIRE WT %)				

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb
Min.		0.5	0.2			13.2	5.0	1.2	1.2	0.15
Max.	0.07	1.0	0.5	0.03	0.03	14.7	6.0	2.0	2.0	0.5
Typical	0.05	0.7	0.3	0.01	0.02	14	5.5	1.6	1.7	0.3

ALL-WELD MECHANICAL PROPERTIES

Typical PWHT		Aged *	Over-aged **	Over-aged ***	single cycle 550°C
Tensile strenght (MPa)		1345	1100	1025	1200
0.2% proof strength (MPa)		1240	1050	760	1000
Elongation (%)	4d	5	19	22	19
	5d	5	16	21	16
Reduction of area (%)		15	50	60	50
Impact ISO-V(J)	+ 20°C	7	60	125	125
	- 20°C		20	85	75
Hardness mid	HV	450	380	315	400
* 850°C/2 hours, air co	ol to 20°C + 45	0°C/4 hours, air cool	. Not recommended fo	r structural work.	

** 750°C/2 hours, air cool to 20°C + 550°C/2 hours, air cool. More commonly applied PWHT.

*** 750°C/2 hours, air cool to 20°C + 620°C/2 hours, air cool.

TYPICAL OPERATING PARAMETERS

	Shielding	Current	Diameter (mm)	Parameters
TIG	Argon*	DC-	2.4	120A, 14V
 * Also required as a p 	ourge for root runs.			

PACKAGING DATA

Diameter (mm)	1.6	2.4	3.2
TIG	5 kg tube	5 kg tube	5 kg tube

FUME DATA

MIG fume composition (wt %) (TIG fume negligible)

Fe	Mn	Cr ³	Ni	Мо	Cu	OES (mg/m ³)
52	4	11	4	< 0.5	2.7	4.5

17-4PH

SOLID TIG WIRE FOR WELDING 17-4PH STAINLESS STEEL

PRODUCT DESCRIPTION

Solid wire for TIG welding.

SPECIFICATIO	NS							ASME IX Q	UALIFICA	ΓΙΟΝ
AWS A5.9	E	R630						QW432	F-No 6	
CHEMICAL COMPOSITION (WIRE WT %)										
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb

Min. 0.25 16.00 4.5 3.25 0.15 0.75 16.75 0.75 4.00 0.30 Max. 0.05 0.75 0.03 0.03 5.0 0.005 Typical 0.03 0.6 0.4 0.02 16.3 4.8 0.2 3.5 0.2

ALL-WELD MECHANICAL PROPERTIES

Typical PWHT	Over-aged *	
Tensile strength (MPa)	930	
0.2% proof strength (MPa)	740	
Elongation (%)	10	
* 750° (2 bours air cool to 15° + 550° (2)	ours air cool: or 1040°C air cool + 620°C	/4 bours

* 750°C/2 hours, air cool to 15°C + 550°C/2 hours, air cool; or 1040°C, air cool + 620°C/4 hours.

TYPICAL OPERATING PARAMETERS

	Shielding	Current	Diameter (mm)	Parameters
TIG	Argon*	DC-	2.4	120A, 14V
* Also required as a purge	for root runs.			

PACKAGING DATA

Diameter (mm)	1.6	2.4
TIG	2.5 kg tube	2.5 kg tube

MIG fume composit	tion (wt %) (TIG fu	me negligible)				
Fe	Mn	Cr3	Ni	Мо	Cu	OES (mg/m3)
50	4	13	3.5	<0.5	5.5	3.6

Data Sheet B-30

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

308L STAINLESS STEELS

ALLOY TYPE

308L austenitic stainless steels for joining 304L base materials.

MATERIALS TO BE WELDED

ASTM	BS EN & DIN
304L	1.4306
304	1.4301
304LN	1.4311
CF3	1.4308
CF8	1.4541
321	1.4543/1.4561/1.4550
347	

BS	UNS
304S11	S30403
304S15/16/31	S30400
304S61	S30453
304C12	S32100
304C15	S34700
321S31	
347S31	

APPLICATIONS

Used to weld 18/8 stainless steels including 301, 302, 303, nitrogen bearing 304LN and titanium stabilised 321. Service temperatures are typically -100° C to about 400°C.

Applications include food, brewery, pharmaceutical equipment, architectural and general fabrication, and nuclear engineering.

The 308L consumables covered here are not suitable for 304/304H in elevated temperature structural applications, see data sheets C-10 and C-12. For cryogenic applications $(-196^{\circ}C)$ see data sheet B-37.

MICROSTRUCTURE

Austenite with a controlled level of ferrite, normally in the range 3-10FN depending on the application.

WELDING GUIDELINES

No preheat, maximum interpass temperature 250°C; no PWHT required.

ADDITIONAL INFORMATION

There is a Technical Profile available on sub-arc welding with 308592. There is also additional information available covering the Supercore flux cored wires.

RELATED ALLOY GROUPS

308L stainless steel consumables for LNG, and other cryogenic applications, are in data sheet B-37. Stainless steel consumables for high temperature applications on 304H can be found in data sheets C-10 or C-12.

PRODUCTS AVAILABLE

Process	Product	Specification
	Supermet 308L	AWS E308L-17
MMA	Ultramet 308L	AWS E308L-16
MMA	Ultramet B308L	AWS E308L-15
	Ultramet 308LP	AWS E308L-16
TIG	308592	AWS ER308L
MIG	Supermig 308LSi	AWS ER308LSi
	308592	AWS ER308L
SAW	SS300	BS EN SA AF2
	SSB	BS EN SA AF2
	Supercore 308L	AWS E308LT0-1/4
FCW	Supercore 308LP	AWS E308LT1-1/4
	Superoot 308L	AWS R308LT1-5

SUPERMET 308L

GENERAL PURPOSE RUTILE 308L MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode – rutile aluminosilicate flux on high purity 304L core wire giving very low typical carbon level.

'Low hydrogen' manufacturing technology ensures high resistance to weld metal porosity. 'Supermet Technology' gives acid rutile operability combined with controlled silicon content for maximum cracking/corrosion resistance.

Designed for ease of use, exceptional weld bead appearance and high weld metal integrity, primarily in the downhand and HV positions; smaller sizes offer all-positional operability.

Recovery is about 115% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M	E308L-17	ASME IX QUALIFICATION	
BS EN ISO 3581	E 19 9 L R 3 2	QW432 F-No 5	
		QW442 A-No 8	

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				18.0	9.0			3
Max.	0.04	2.0	0.90	0.025	0.030	21.0	11.0	0.5	0.5	10
Typical	0.02	0.8	0.6	0.01	0.02	19.5	10	0.10	0.05	б

ALL-WELD MECHANICAL PROPERTIES

As-welded	Min.	typical
Tensile strength (MPa)	520	590
0.2% proof strength (MPa)	320	450
Elongation (%) 4d	35	45
5d	30	40
Reduction of area %		45
Impact ISO-V(J) +20°C		80

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.0	2.5	3.2	4.0	5.0
min. A	50	60	75	100	130
max. A	70	90	120	155	210
PACKAGING DATA					
Diameter (mm)	2.0	2.5	3.2	4.0	5.0
Length (mm)	300	300	350	450	450
kg/carton	10.5	11.4	12.0	16.5	16.5
Pieces/carton	846	609	333	243	156

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m3)
8	5	5	0.8	-	< 0.2	16	1
* E_200/ for ba	cic costod Ultram	at BOORL but this	door not affort	the OFC			

ULTRAMET 308L

ALL-POSITIONAL RUTILE MMA ELECTRODE FOR 304L

PRODUCT DESCRIPTION

MMA electrode – rutile flux coated 308L electrode on high purity 304L core wire. Ultramet has all the benefits of an advanced rutile flux design – this includes optimum versatility for downhand welding with high cosmetic finish and weld metal integrity; and all-positional welding with the 2.5/3.2mm electrodes including fixed pipework.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M	E308
BS EN ISO 3581	E 19 9
Approvals	ΤÜV

E308L-16	
E 19 9 L R 3 2	
ΤÜV	

ASME IX QUA	LIFICATION
QW432	F-No 5
QW442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				18.0	9.0			3
Max.	0.04	2.0	0.90	0.025	0.030	21.0	11.0	0.50	0.5	10
Typical	< 0.03	1	0.6	0.01	0.02	19	9.5	0.1	0.1	6

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	typical	1050°C + WQ
Tensile strength (MPa)		520	590	540
0.2% proof strength (MPa)		320	450	290
Elongation (%)	4d	35	45	50
	5d	30	42	48
Reduction of area %			50	64
Impact ISO-V(J)	-100°C		35	
	-196°C	*		> 60

* See Ultramet 308LCF (data sheet B-37) for as-welded cryogenic applications at -196°C.

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
ACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
	200	25.0	25.0	450
Length (mm)	300	350	350	450
Length (mm) kg/carton	300 12.0	350 13.5	13.5	450 17:1

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F*	OES (mg/m3)
8	5	5	0.8	-	< 0.2	16	1

ULTRAMET B308L

BASIC COATED MMA PIPE-WELDING ELECTRODE FOR 304L

PRODUCT DESCRIPTION

MMA electrode – designed and manufactured to give high moisture resistance using a basic flux system and high purity 304L core wire. Ultramet B308L is particularly suited to the most demanding vertical and overhead welding applications including fixed pipework in the ASME 5G/6G position. Under site conditions it is tolerant to adverse wind and drafts. Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS		ASME IX QUALIFICATION
AWS A5.4M BS EN ISO 3581	E308L-15 E 19 9 L B 4 2	QW432 F-No 5 QW442 A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				18.0	9.0			3
Max.	0.04	2.0	0.90	0.025	0.030	21.0	11.0	0.50	0.5	10
Typical	0.03	1.2	0.3	0.01	0.015	19	10	0.1	<0.1	6

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		520	600
0.2% proof strength (MPa)		320	440
Elongation (%)	4d	35	44
	5d	30	40
Reduction of area %			60
Impact ISO-V(J)	+20°C		80-120
	-196°C		35-50

TYPICAL OPERATING PARAMETERS, DC +VE ONLY

Diameter (mm)	2.5	3.2	4.0
min. A	60	75	100
max. A	90	120	155

PACKAGING DATA

Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	350
kg/carton	12.0	13.5	13.5
Pieces/carton	700	405	266

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume	composition,	wt	%	typical
------	--------------	----	---	---------

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m3)
8	5	5	0.8	-	< 0.2	16	1

STAINLESS STEELS

ULTRAMET 308LP

ALL-POSITIONAL PIPE WELDING AND ROOT WELDING ELECTRODE

PRODUCT DESCRIPTION

MMA electrode – rutile flux on high purity 304L core wire giving very low typical carbon level. Ultramet 308LP is a fully allpositional electrode capable of the most demanding fixed pipework applications including ASME 5G/6G.

The Ultramet 308LP electrode has also been designed to deposit single-side root runs without the need for a gas purge.

The electrode is also suitable for vertical-down welding on thin sheet material.

Recovery is about 105% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M	
BS EN ISO 358	1

E308L-16 E 19 9 L R 11

ASME IX QUALIFICATION							
QW432	F-No 5						
QW442	A-No 8						

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				18.0	9.0			3
Max.	0.04	2.0	0.90	0.025	0.030	21.0	11.0	0.1	0.5	10
Typical	0.02	0.8	0.8	0.01	0.02	19	10	0.01	0.1	б

ALL-WELD MECHANICAL PROPERTIES

As welded	N	lin. T	ypical
Tensile strength (MPa)	5	20	620
0.2% proof strength (MPa)	3	20	450
Elongation (%)	4d	35	45
	5d E	30	43
Reduction of area %			50
Impact ISO-V(J)	-105°C	-	35

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.0	2.5	3.2
min. A	50	60	75
max. A	70	90	120

PACKAGING DATA

Diameter (mm)	2.0	2.5	3.2
Length (mm)	300	300	350
kg/carton	11.7	12.0	14.1
Pieces/carton	1086	702	447

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F*	OES (mg/m3)
8	5	5	0.8	-	< 0.2	16	1

308S92 and SUPERMIG 308LSi

SOLID WIRES FOR TIG, MIG AND SAW

PRODUCT DESCRIPTION

Solid wires for TIG, MIG and sub-arc welding.

SPECIFICATIONS ASME IX QUALIFICATION 308592 (TIG & Sub-arc) Supermig 308LSi (MIG) QW432 F-No 6 AWS A5.9M ER308L ER308L Si QW442 A-No 3 BS EN ISO 14343-A 19 9 L G 19 9 L Si GW442 A-No 3 BS EN ISO 14343-B SS308L SS308L Si APPROVALS TÜV (TIG) FUNCTION

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si *	S	Р	Cr	Ni	Мо	Cu	FN
Min.		1.0	0.30			19.5	9.0			3
Max.	0.025	2.0	0.65	0.020	0.030	21.0	11.0	0.3	0.3	12
Typical	0.01	1.7	0.4	0.01	0.015	20	10	0.1	0.15	10
11		i./ ii: Si range i		0.01 %, typically (20	IU	U.I	0.15	

ALL-WELD MECHANICAL PROPERTIES

		Typical	
	TIG	MIG	SAW + SS300
	605	570	570
	465	435	450
4d	35	42	41
5d	33	40	37
-130°C	110	70	50
-196°C *	80	30-60	30
HV	200/220	200/220	195/215
	4d 5d -130°C -196°C * HV	605 465 4d 35 5d 33 -130°C 110 -196°C* 80	TIG MIG 605 570 465 435 4d 35 42 5d 33 40 -130°C 110 70 -196°C* 80 30-60

* For applications requiring cryogenic toughness see data sheet B-37.

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
٦	ГIG Argon	DC-	2.4	100A, 12V
Ν	1IG Ar+2%0,*	DC+	1.2	260A, 26V
SA	AW SS300**	DC+	2.4	350A,28V
*	Also proprietary Ar and Ar-He	gas mixtures with < 3%CO2		
**	SSB, L2N and LA491 also suitab	le.		

PACKAGING DATA

Diameter (mm)	0.8	1.0	1.2	1.6	2.0	2.4	3.2	4.0
TIG (308S92)		5 kg tube	5 kg tube					
MIG (Supermig 308LSi)	15kg reel	15kg reel	15kg reel					
SAW (308S92)						25kg spool	25kg spool	25kg spool

MIG fume composi	MIG fume composition (wt %) (TIG and SAW fume negligible)							
Fe	Mn	Cr ^a	Ni	Мо	Cu	0ES (mg/m3)		
32	12	16	8	< 0.5	< 0.5	3.1		

STAINLESS STEELS

SUPERCORE 308L, 308LP

RUTILE FLUX CORED WIRES

PRODUCT DESCRIPTION

Flux cored wires – the wires are made with an austenitic stainless steel sheath and rutile flux system. **Supercore 308L** combines easy operability, high deposit quality and exceptional weld bead appearance for downhand and HV welding.

Supercore 308LP is designed for all-positional welding including fixed pipework.

Metal recovery is about 90% with respect to the wire.

The Supercore 308L wire is not suitable for applications requiring PWHT or solution annealing – for these applications, it is recommended that Supercore 308LP is used.

SPECIFICATIONS			ASME IX QUALIFICATION
	Supercore 308L	Supercore 308LP	QW432 F-No 6
AWS A5.22M	E308LT0-1/4	E308LT1-1/4	QW442 A-No 8
BS EN ISO 17633-A	T 19 9 L R C/M 3	T 19 9 L P C/M 2	
BS EN ISO 17633-B Approvals	TS308L-FB0 TÜV, DNV, LRS	TS308L-FB1 TÜV	

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5	0.2			18.5	9.0			3
Max.	0.04	2.0	1.0	0.025	0.030	20.5	11.0	0.3	0.3	12
Typical	0.03	1.3	0.7	0.02	0.02	19.5	10	0.1	0.1	8

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		520	560
0.2% proof strength (MPa)		320	400
Elongation (%)	4d	35	43
	5d	30	42
Reduction of area (%)			60
Impact ISO-V(J)	+20°C		80
	-110°C		40
Hardness	HV		200

OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO, or 100% CO, at 20-25l/min. Proprietary gases may be used but argon should not exceed 85%.

Current: DC+ve ranges as below for Ar-20%CO, Welding with 100%CO, requires approx 3V higher:

Diameter (mm)	amp-volt range	typical	stickout
1.2	120 – 280A, 22 – 34V	180A, 29V	15 – 20mm
1.2P	120 – 250A, 22 – 32V	150A, 25V	15 – 20mm
1.6	200 – 350A, 26 – 36V	250A, 30V	15 – 25mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg.

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

Fume composition (w	rt %]
---------------------	-------

Fe	Mn	Ni	Cr³	Cr⁵	Cu	F	OES (mg/m ³)
12	6	1	7	1	<1	12	1

SUPEROOT 308L

FLUX CORED TIG WIRE FOR ROOT WELDS WITHOUT BACK PURGE

PRODUCT DESCRIPTION

Flux cored TIG wire **Superoot 308L** is made with a seamless austenitic stainless steel sheath, which results in a robust moisture resistant wire and rutile flux system.

Superoot 308L is designed specifically for situations where it is impractical to apply back-purge for the TIG root run, or where there is an economic benefit in eliminating back-purge.

Metal recovery is 90% with respect to the whole wire.

SPECIFICATIONS		ASME IX QU	ALIFICATION
AWS A5.22M	R308LT1-5	QW432	F-No 6
BS EN ISO 17633-B	TS308L-RI1	QW442	А-No б

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu		
Min.		0.5				18.0	9.0				
Max.	0.03	2.5	1.2	0.03	0.04	21.0	11.0	0.5	0.5		
Typical	0.02	1.7	0.8	0.005	0.020	19.6	10.3	0.1	0.05		
Typically	Tunically QEN										

Typically 8FN.

ALL-WELD MECHANICAL PROPERTIES

As welded	Typical	
Tensile strength (MPa)	640	
0.2% proof strength (MPa)	450	
Elongation (%) 4d	47	

Note: In practice, mechanical properties of the root bead are assessed with the whole joint and subsequent filler.

TYPICAL OPERATING PARAMETERS

	Shielding	Current	Diameter (mm)	Voltage				
TIG	TIG Argon*		2.2	90A, 12V				
* No back-purge is required.								
Satisfactory application of Superoot 308L requires the use of a keyhole welding technique. Further details are available on request.								

PACKAGING DATA

Diameter (mm)	2.2	
TIG	1 kg tube	

Fume composition (wt%)										
Fe	Mn	Ni	Cr³	Мо	Cu	F	OES (mg/m3)			
32	12	8	16	< 0.5	< 0.5		3.1			

Data Sheet B-31

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

347 STAINLESS STEELS

ALLOY TYPE

347 austenitic stainless steel for joining 321 and 347 base materials.

MATERIALS TO BE WELDED

ASTM-ASME 321 347

347 CF8C (cast)

BS 321531 347531 347(17 (cast) 1.4543 / 1.4561 / 1.4550 1.4552 (cast) UNS S32100

S34700

BS EN & DIN 1,4541

APPLICATIONS

Used to weld titanium and niobium stabilised 18/8 stainless steel types 321 and 347. Also suitable for unstabilised grades such as 304/304L. Service temperatures are typically -100°C to about 400°C.

Applications are similar to 308L (B-30) and include **food**, **brewery**, **pharmaceutical equipment**, **architectural** and **general fabrication**, and **nuclear engineering**.

The 347 consumables covered here are generally not suitable for service in elevated temperature structural applications where 0.04-0.08% carbon is specified for creep resistance, see data sheets C-11 and C-12.

For cryogenic applications requiring >0.38mm (15mils) charpy lateral expansion at -196° C, use unstabilised weld metal with low carbon and controlled ferrite (B-30).

MICROSTRUCTURE

Austenite with a controlled level of ferrite, normally in the range 3-12FN.

WELDING GUIDELINES

No preheat, maximum interpass temperature 250°C; no PWHT required.

ADDITIONAL INFORMATION

There is a Technical Profile available on sub-arc welding with 347S96. There is also additional information available covering the Supercore flux cored wires.

RELATED ALLOY GROUPS

The 308L consumables cover many of the same base materials and applications (B-30). For elevated temperature applications 347H consumables should be used (C-11).

PRODUCTS AVAILABLE

Process	Product	Specification		
	Ultramet 347	AWS E347-16		
MMA	Ultramet B347	AWS E347-15		
TIG/MIG	347596	AWS ER347		
MIG	Supermig 347Si	AWS ER347Si		
	347596	AWS ER347		
SAW	SS300	BS EN SA AF2		
	SSB	BS EN SA AF2		
FCW	Supercore 347	AWS E347T0-1/4		

ULTRAMET 347

ALL-POSITIONAL RUTILE MMA ELECTRODE FOR 321/347

PRODUCT DESCRIPTION

MMA rutile flux coated 347 electrode on high purity 304L core wire.

Ultramet 347 has all the benefits of an advanced rutile flux design, including all-positional fixed pipework welding with the 2.5/3.2mm diameter electrodes.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

STAINLESS STEELS

AWS A5.4	М
BS EN ISO	35

3581 E 19 9 Nb R 3 2

ASME IX QUALIFICATION						
QW432	F-No 5					
QW442	A-No 8					

WELDING POSITIONS (ISO/ASME)

E347-16

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Nb	Cu	FN
Min.		0.5				18.0	9.0		10xC		4
Max.	0.04	2.0	0.9	0.025	0.030	21.0	11.0	0.50	1.00	0.50	12
Typical	0.02	0.7	0.7	0.01	0.02	19	9.5	0.05	0.4	0.07	б

ALL-WELD MECHANICAL PROPERTIES

As-welded		Min.	Typical	
Tensile strength (MPa)		560	650	
0.2% proof strength (MPa)		350	500	
Elongation (%)	4d	30	40	
	5d	25	37	
Reduction of area %			52	
Impact ISO-V(J)	+ 20°C		70	
	-196°C		20	
	-196°C		53 (1	1050°C + WQ)

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	11.4	13.5	13.5	16.5
Pieces/carton	660	399	261	159

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

Fume	composition,	wt 9	6 typical

Fe	Mn	Ni	Cr	Cu	F *	OES (mg/m ³)	
8	5	0.8	5	<0.2	16	1	
* F=28% for basic	=28% for basic coated Ultramet B347 but this does not affect the OES.						

ULTRAMET B347

BASIC PIPE-WELDING ELECTRODE FOR 321/347

PRODUCT DESCRIPTION

MMA electrode with basic carbonate-fluoride flux on high purity 304L core wire. Designed to give good moisture resistance and hence freedom from weld porosity. The electrode is particularly suited to positional welding of fixed pipework qualified in the ASME 5G/6G position and is tolerant to adverse wind and draughts under site conditions. Compared with rutile types, the basic flux gives a more convex fillet bead profile and although the slag does not self-lift, it is easily removed and gives welds of exceptional appearance and quality.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

i

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	C	Mn	Si	S	Р	Cr	Ni	Мо	Nb	Cu	FN
Min.		0.5				18.0	9.0		10xC		4
Max.	0.06	2.0	0.9	0.025	0.030	21.0	11.0	0.50	1.00	0.50	12
Typical	0.03	1.2	0.3	0.01	0.02	19	9.5	0.05	0.5	0.07	б

ALL-WELD MECHANICAL PROPERTIES

As welded	Min.	typical	
Tensile strength (MPa)	560	650	
0.2% proof strength (MPa)	350	500	
Elongation (%)	4d 30	40	
	5d 25	37	
Reduction of area %		52	
Impact ISO-V(J)	-50°C	90	

TYPICAL OPERATING PARAMETERS, DC +VE

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350/450	450
kg/carton	12.0	13.5	13.5/17.4	17.4
Pieces/carton	669	396	258/267	162
* 350mm is the standard le	ngth, 450mm is availa	ible to order.		

350mm is the standard length, 450mm is available to order

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUMF DATA

Fume composition wt % typical

Fe	Mn	Ni	Cr	Cu	F *	OES (mg/m ³)
8	5	0.8	5	<0.2	16	1
-2004 for bacic	costod Illtramot P	147 but this doos no	t affect the OES			

F=28% for basic coated Ultramet B347 but this does not affect the UES.

ASME IX OUALIFICATION

347S96 and SUPERMIG 347Si

SOLID WIRES FOR TIG, MIG & SAW OF <u>321/347</u>

PRODUCT DESCRIPTION

Solid wires for TIG, MIG and sub-arc welding.

SPECIFICATIONS			ASME IX QU	JALIFICATION
	347S96 (TIG, MIG & sub-arc)	Supermig 347Si (MIG)	QW432	F-No 6
AWS A5.9M	ER347	ER347Si	QW442	A-No 8
BS EN ISO 14343-A	19 9 Nb	G 19 9 Nb Si	W=TIG. G=MIG. S=SAW	
BS EN ISO 14343-B	SS347	SS347 Si	VV-110, 0-MIO, 3-3AVV	

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Nb	Cu	FN
Min.		1.0	0.30			19.0	9.0		10xC		4
Max.	0.08	2.5	0.65	0.020	0.030	21.0	11.0	0.3	1.0	0.3	12
Typical	< 0.04	1.5	0.4	0.005	0.02	19.5	9.7	0.2	0.6	0.1	8

ALL-WELD MECHANICAL PROPERTIES

Typical values as welded		TIG	MIG/Supermig 347Si
Tensile strength (MPa)		660	650
0.2% proof strength (MPa)		450	475
Elongation (%)	4d	42	47
	5d	40	42
Impact ISO-V(J)	20°C	230	100
	- 50°C	150	
	- 196°C	35	
Hardness cap/mid	HV	220/240	

TYPICAL OPERATING PARAMETERS

		Shielding gas	Current	Diameter (mm)	Parameters
	TIG	Argon*	DC-	2.4	100A, 12V
	MIG	Ar+2%0,**	DC+	1.2	260A, 26V
	SAW	SS300 or SSB	DC+	2.4	350A,28V
*	A	lso required as a purge for ro	ot runs.		
A					

** Also proprietary Ar and Ar-He mixtures with <3%CO₂.

PACKAGING DATA						
Diameter (mm)	1.0	1.2	1.6	2.0	2.4	3.2
TIG			2.5 kg tube	To order	2.5 kg tube	2.5 kg tube
MIG	15kg spool	15kg spool				
SAW			25kg spool		25kg spool	25kg spool

MIG fume composition (wt %) (TIG and SAW fume negligible)

Fe	Mn	Cr3	Ni	Мо	Cu	OES (mg/m ³)
32	12	16	8	<0.5	<0.5	3.1

SUPERCORE 347

DOWNHAND RUTILE FLUX CORED WIRE FOR 321/347

PRODUCT DESCRIPTION

Flux cored wire made with an austenitic stainless steel sheath and rutile flux system. Supercore 347 combines easy operability, high deposit quality and good weld bead appearance for downhand and HV welding. Metal recovery is about 90% with respect to wire.

SPECIFICATIONS

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Nb	Cu	FN
Min.		0.5				18.0	9.0		8xC		4
Max.	0.08	2.0	1.0	0.025	0.030	21.0	11.0	0.3	1.0	0.3	12
Typical	0.03	1.2	0.4	0.01	0.02	19	10.5	0.1	0.5	0.1	8

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		550	600
0.2% proof strength (MPa)		350	435
Elongation (%)	4d	30	47
	5d	25	42
Reduction of area %			50
Impact ISO-V(J)	+20°C		90

OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO2 at 20-25//min. Proprietary gases may be used but argon should not exceed 85% argon. The wire is suitable for use on CO2 but with some loss of cosmetic appearance and increased spatter.

Current: DC+ve ranges as below (for 100%CO2 increase voltage by 2-3V):

Diameter (mm)	amp-volt range	typical	stickout
1.2	120 – 280A, 22 – 34V	180A, 29V	15 – 20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition, wt %

Fe	Mn	Ni	Cr3	Cr6	Cu	F	OES (mg/m ³)
17	11	2	4	5	<1	5	1

ASME IX OUALIFICATION

| 125

Data Sheet B-32

316L STAINLESS STEELS

ALLOY TYPE

316L Mo bearing austenitic stainless.

MATERIALS TO BE WELDED

ASTM	BS EN & DIN
316L	1.4404 / 1.4401
316	1.4436
316LN	1.4406 / 1.4429
CF3M	1.4408
CF8M	1.4437
BS	UNS
316S11 / 13	S 31603
316S16 / 31 / 33	S 31600
316561	S 31653
316C12 / 16 / 71	

APPLICATIONS

These consumables are used for Mo bearing austenitic stainless steels with 1.5 - 3% Mo. They are also suitable for Ti or Nb stabilised and nitrogen-bearing or free machining versions of the above alloys. Type 316/316L steels are widely used for their good resistance to pitting, many acids and general corrosion.

The 316L consumables covered here are not suitable for 316/316H in elevated temperature structural applications, see data sheets C-12 and C-13. For cryogenic applications (–196°C) see data sheet B-38.

MICROSTRUCTURE

Austenite with a controlled level of ferrite, normally in the range 2-10FN depending on the application.

WELDING GUIDELINES

No preheat, maximum interpass temperature 250°C; no PWHT required.

ADDITIONAL INFORMATION

There are Technical Profiles available on Superoot 316L and sub-arc welding with 316S92. There is also additional information available covering the Supercore flux cored wires.

RELATED ALLOY GROUPS

316L stainless steel consumables for LNG, and other cryogenic applications, are in data sheet B-38. Stainless steel consumables for high temperature applications on 316H can be found in data sheets C-12 or C-13.

PRODUCTS AVAILABLE

Process	Product	Specification
	Supermet 316L	AWS E316L-17
MMA	Ultramet 316L	AWS E316L-16
MMA	Ultramet B316L	AWS E316L-15
	Ultramet 316LP	AWS E316L-16
TIG	316592	AWS ER316L
MIG	Supermig 316LSi	AWS ER316LSi
	316592	AWS ER316L
SAW	SS300	BS EN SA AF2
	SSB	BS EN SA AF2
	Supercore 316L	AWS E316LT0-1/4
FCW	Supercore 316LP	AWS E316LT1-1/4
	Superoot 316L	AWS R316LT1-5

SUPERMET 316L

GENERAL PURPOSE RUTILE 316L MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode – rutile aluminosilicate flux on high purity 304L core wire giving very low typical carbon level. 'Low hydrogen' manufacturing technology ensures high resistance to weld metal porosity. 'Supermet Technology' gives acid rutile operability combined with controlled silicon content for maximum cracking/corrosion resistance. Designed for ease of use, exceptional weld bead appearance and high weld metal integrity, primarily in the downhand and HV positions; smaller sizes offer all-positional operability. Recovery is about 115% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581

.4M E316L-17 50 3581 E 19 12 3 L R 3 2

ASME IX QU	ALIFICATION
QW432	F-No 5
QW442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	C	Mn	Si	S	Р	Cr	Ni	Mo*	Cu	FN
Min.		0.5				17.0	11.0	2.0		3
Max.	0.04	2.0	0.90	0.025	0.030	20.0	13.0	3.0	0.5	10
Typical	0.02	0.8	0.6	0.01	0.02	19	12	2.7	0.1	б
11		0.0 ro Mo 2 E		0.01	0.02	19	IZ	Z./	0.1	0

* DIN & BS EN require Mo 2.5 – 3.0%.

ALL-WELD MECHANICAL PROPERTIES

As-welded		Min.	typical	1050°C + WQ
Tensile strength (MPa)		520	600	550
0.2% proof strength (MPa)		320	480	320
Elongation (%)	4d	30	42	52
	5d	25	39	49
Reduction of area %			60	52
Impact ISO*-V(J)	+20°C		70	
	-196°C			35

* See data sheet B-38 for as-welded cryogenic applications at -196°C

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

The first of English and the first of the formation of the first of th										
Diameter (mm)	1.6	2.0	2.5	3.2	4.0	5.0				
min. A	25	50	60	75	100	130				
max. A	45	70	90	120	155	210				
PACKAGING DATA										
Diameter (mm)	1.6	2.0	2.5	3.2	4.0	5.0				
Length (mm)	250	300	300	350	450	450				
kg/carton	8.7	10.5	11.4	12.6	17.4	16.8				
Pieces/carton	1344	846	603	339	249	159				

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m3)
8	7	5	1	0.5	< 0.2	16	1

ULTRAMET 316L

ALL-POSITIONAL RUTILE MMA ELECTRODE FOR 316L

PRODUCT DESCRIPTION

MMA electrode – rutile flux coated 316L electrode on high purity 304L core wire. Ultramet has all the benefits of an advanced rutile flux design – this includes optimum versatility for downhand welding with high cosmetic finish and weld metal integrity; and all-positional welding with the 2.5/3.2mm electrodes including fixed pipework.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581 Approvals

4M E316L-16 0 3581 E 19 12 3 L R 3 2

TÜV, LRS

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Mo*	Cu	FN
Min.		0.5				17.0	11.0	2.0		3
Max.	0.04	2.0	0.90	0.025	0.030	20.0	13.0	3.0	0.5	10
Typical	<0.03	1	0.6	0.01	0.02	19	12	2.6	<0.1	б

DIN & BS EN require Mo 2.5 – 3.0%.

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	typical	1050°C + WQ
Tensile strength (MPa)		520	580	540
0.2% proof strength (MPa)		320	480	305
Elongation (%)	4d	30	43	52
	5d	25	41	50
Reduction of area %			65	58
Impact ISO-V(J)	+ 20°C		70	
	-100°C		40	
	-196°C			40
Hardness	HV		230	185

* See data sheet B-38 for as-welded cryogenic applications at -196°C.

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	11.4	12.9	13.5	16.5
Pieces/carton	618	393	261	159

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F	OES (mg/m3)
8	7	5	1	0.5	< 0.2	16	1

ASME IX OUALIFICATION

F-No 5

A-No 8

QW432

OW442

ULTRAMET B316L

BASIC COATED MMA PIPE-WELDING ELECTRODE FOR 316L

PRODUCT DESCRIPTION

MMA electrode – designed and manufactured to give high moisture resistance using a basic flux system and high purity 304L core wire. **Ultramet B316L** is particularly suited to the most demanding vertical and overhead welding applications including fixed pipework in the ASME 5G/6G position. Under site conditions it is tolerant to adverse wind and drafts. Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581

S EN ISO 3581 E 19 12 3 L B 4 2

ASME IX QUALIFICATION QW432 F-No 5 QW442 A-No 8

WELDING POSITIONS (ISO/ASME)

E316L-15

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				17.0	11.0	2.0		3
Max.	0.04	2.0	0.90	0.025	0.030	20.0	13.0	3.0	0.5	10
Typical	< 0.03	1.2	0.3	0.01	0.02	19	12	2.6	<0.1	б

ALL-WELD MECHANICAL PROPERTIES

As welded	Min.	Typical
Tensile strength (MPa)	520	600
0.2% proof strength (MPa)	320	470
Elongation (%) 4d	30	37
- 5d	25	33
Reduction of area %		50
Impact ISO-V(J) +20°C		80
-196°C		45
Lateral expansion * (mm) -196°C	0.38	0.5
to be been and the second		

* See data sheet B-38 for as-welded cryogenic applications at -196°C.

TYPICAL OPERATING PARAMETERS, DC +VE ONLY

2.5	3.2	4.0	5.0
60	75	100	130
90	120	155	210
2.5	3.2	4.0	5.0
300	350	350	450
12.0	13.5	13.5	16.5
681	396	261	159
	2.5 60 90 2.5 300 12.0	2.5 3.2 60 75 90 120 2.5 300 350	2.5 3.2 4.0 60 75 100 90 120 155 2.5 3.2 4.0 300 350 350 12.0 13.5 13.5

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F	OES (mg/m ³)
8	7	5	1	0.5	< 0.2	28	1

ULTRAMET 316LP

ALL-POSITIONAL PIPE WELDING AND ROOT WELDING ELECTRODE

PRODUCT DESCRIPTION

MMA electrode - rutile flux on high purity 304L core wire giving very low typical carbon level. Ultramet 316LP is a fully allpositional electrode capable of the most demanding fixed pipework applications including ASME 5G/6G. The Ultramet 316LP electrode has also been designed to deposit single-side root runs without the need for a gas purge. The electrode is also suitable for vertical-down welding on thin sheet material.

Recovery is about 105% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

IS EN ISO 35	681

ASME IX Q	UALIFICATION
QW432	F-No 5
0W442	A-No 8

WELDING POSITIONS (ISO/ASME)

E316L-16 E 19 12 3 L R 1 1

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				17.0	11.0	2.0		3
Max.	0.04	2.5	0.90	0.025	0.030	20.0	13.0	3.0	0.5	10
Typical	0.02	0.8	0.8	0.01	0.02	19	12	2.7	0.1	б

ALL-WELD MECHANICAL PROPERTIES

As welded	Min.	Typical
Tensile strength (MPa)	520	620
0.2% proof strength (MPa)	320	500
Elongation (%) 4d	30	38
5d	25	35
Reduction of area %		45
Impact ISO-V[J] -105°C		40

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.0	2.5	3.2
min. A	50	60	75
max. A	70	90	120

PACKAGING DATA

Diameter (mm)	2.0	2.5	3.2
Length (mm)	300	300	350
kg/carton	11.7	12.3	14.4
Pieces/carton	1089	747	459

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m ³)
8	7	5	1	0.5	< 0.2	16	1

* E=28% for basic coated Ultramet B316L but this does not affect the OES

STAINLESS STEELS

316S92 and SUPERMIG 316LSi

SOLID WIRES FOR TIG, MIG AND SAW

PRODUCT DESCRIPTION

Solid wires for TIG, MIG and sub-arc welding.

SPECIFICATIONS

	316592 (TIG & sub-arc)	Supermig 316LSi (MIG)	QW432	F-No 6
AWS A5.9M	ER316L	ER316LSi	QW442	A-No 8
BS EN ISO 14343-A	19 12 3 L	G 19 12 3 LSi		
BS EN ISO 14343-B	SS316L	SS316LSi		
Approvals	TÜV, LRS	TÜV, LRS		

W=TIG, G=MIG, S=SAW

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si *	S	Р	Cr	Ni	Мо	Cu	FN
Min.		1.0	0.30			18.0	11.0	2.5		3
Max.	0.03	2.0	0.65	0.020	0.030	20.0	14.0	3.0	0.3	10
Typical	0.01	1.4	0.5	0.01	0.015	18.5	12.8	2.6	0.15	6
11				0.01		18.5	12.8	2.6	0.15	6

* Supermig 316LSi: Si range is 0.65 – 1.0%, typically 0.85%.

ALL-WELD MECHANICAL PROPERTIES

Min		Typical				
	MIII.	TIG	MIG	SAW + SS300		
	510	605	570	570		
	320	465	435	450		
4d	30	35	42	41		
5d	30	33	40	37		
-130°C		> 100	> 70	> 45		
-196°C		> 60	30-60	30		
HV		200/220	200/220	195/215		
	5d -130°C -196°C	320 4d 30 5d 30 -130°C -196°C	TIG 510 605 320 465 4d 30 35 5d 30 33 -130°C >100 -196°C > 60	Min. TIG MIG 510 605 570 320 465 435 4d 30 35 42 5d 30 33 40 -130°C >100 >70 -196°C >60 30-60		

* See data sheet B-38 for as-welded cryogenic applications at -196°C.

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
TI	G Argon	DC-	2.4	100A, 12V
MI	G Ar+2%0,*	DC+	1.2	260A, 26V
SAV	V SS300**	DC+	2.4	350A,28V
ł	Also proprietary Ar and Ar-He	gas mixtures with < 3%CO.		
**	SSB also suitable.	- 2		

PACKAGING DATA

Diameter (mm)	0.8	0.9	1.0	1.2	1.6	2.0	2.4	3.2
TIG (316S92)	To order		5 kg tube	5 kg tube				
MIG (Supermig 316LSi)	15kg reel	15kg reel	15kg reel	15kg reel				
SAW (316S92)							25kg spool	25kg spool

FUME DATA

Fe	Mn	Cr ³	Ni	Мо	Cu	OES (mg/m ³)
30	12	15	11	1.5	< 0.5	3.3

ASME IX OUAL IFICATION

SUPERCORE 316L, 316LP

RUTILE FLUX CORED WIRES

PRODUCT DESCRIPTION

Flux cored wires – the wires are made with an austenitic stainless steel sheath and rutile flux system. **Supercore 316L** combines easy operability, high deposit quality and exceptional weld bead appearance for downhand and HV welding. **Supercore 316LP** is designed for all-positional welding including fixed pipework. Metal recovery is about 90% with respect to the wire. The Supercore 316L wire is not suitable for applications requiring PWHT or solution annealing – for these applications, it is recommended that Supercore 316LP is used.

SPECIFICATIONS

	Supercore 316L	Supercore 316LP	0W432
/S A5.22M	E316LT0-1/4	E316LT1-1/4	0W442
EN ISO 17633-A	T 19 12 3 L R C/M 3	T 19 12 3 L P C/M 2	Q
5 EN ISO 17633-B	TS316L-FB0	TS316L-FB1	
oprovals (1.2 & 1.6mm)	TÜV I RS	TÜV. LRS. ABS. DNV	

CHEMICAL COMPOSITION (WELD METAL WT %)

	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5	0.2			17.0	11.0	2.5		3
Max.	0.04	2.0	1.0	0.025	0.030	20.0	13.0	3.0	0.3	12
Typical	0.03	1.3	0.5	0.02	0.02	18	12.5	2.7	0.1	6

* 0.9mm diameter Supercore 316L is typically 2.3%Mo and does not conform to BS EN ISO 17633-A.

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		510	580
0.2% proof strength (MPa)		320	440
Elongation (%)	4d	30	40
	5d	25	38
Reduction of area (%)			50
Impact ISO-V(J)	+20°C		70
	-110°C		40
Hardness cap/mid	HV		200/210

OPERATING PARAMETERS

Shielding gas: Either 80%Ar-20%CO2 or 100% CO2 shielding gas at 20-251/min. Proprietary gases may be used but argon should not exceed 85%.

Current: DC+ve ranges as below for Ar-20%CO2. Welding with 100%CO2 requires approx 3V higher:

Diameter (mm)	Diameter (mm) amp-volt range		stickout
0.9 (Supercore 316L only)	75 – 170A, 20 – 30V	120A, 26V	15 – 20mm
1.2	120 – 280A, 21 – 35V	180A, 28V	15 – 20mm
1.2P	120 – 250A, 20 – 32V	160A, 26V	15 – 20mm
1.6	200 – 350A, 26 – 36V	250A, 30V	15 – 25mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg.

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition (wt %)

Fe	Mn	Ni	Cr³	Cr⁵	Cu	F	OES (mg/m ³)
13.5	1.5	1.5	7.5	1	<1	11	1.2

ASME IN OTIVITEICATION

SUPEROOT 316L

FLUX CORED TIG WIRE FOR ROOT WELDS WITHOUT BACK PURGE

PRODUCT DESCRIPTION

Flux cored TIG wire Superoot 316L is made with a seamless austenitic stainless steel sheath, which results in a robust moisture resistant wire and rutile flux system. Superoot 316L is designed specifically for situations where it is impractical to apply back-purge for the TIG root run, or to gain the economic benefit of eliminating back-purge. For most applications, the use of a 316L root bead is considered compatible with subsequent filling with 308L, 347 or 316L as appropriate. Metal recovery is 90% with respect to the whole wire.

PECIFICATIONS		UALIFIC
AWS A5.22M	R316LT1-5	F-N
N ISO 17633-B	B TS316L-Rl1	A-No

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu
Min.		1.0	0.2			17.0	11.0	2.0	
Max.	0.03	2.0	1.0	0.025	0.03	20.0	14.0	3.0	0.5
Typical	0.01	1.6	0.8	0.005	0.020	19.2	12.5	2.2	0.05
Typically	5FN.								

ALL-WELD MECHANICAL PROPERTIES

Typical	
605	
450	
38	
	450

Note: In practice, mechanical properties of the root bead are assessed with the whole joint and subsequent filler.

TYPICAL OPERATING PARAMETERS

	Shielding	Current	Diameter (mm)	Voltage
TIG	Argon*	DC-	2.2	90A, 12V
* No back purgo is roo	wirod			

* No back-purge is required.

Satisfactory application of Superoot 316L requires the use of a keyhole welding technique. Further details are available on request.

PACKAGING DATA

Diameter (mm)
TIG 1k

FUME DATA

Fume compositi	on (wt%)						
Fe	Mn	Ni	Cr³	Cu	F	OES (mg/m3)	OES (mg/m ³)
30	12	11	15	< 0.5		3.3	3.1

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9L, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

NON-MAGNETIC 316L CONSUMABLES

ALLOY TYPE

STAINLESS STEELS

Nil-ferrite, modified 316L alloy for non-magnetic, cryogenic and nitric acid applications.

MATERIALS TO BE WELDED

For type 316L and similar parent materials where ferrite-free and non-magnetic weld metal is required; also suitable for 304/304L and 316/316L for cryogenic service.

May be suitable for welding 200 series stainless steels, eg. UNS S20910 (XM-19), Nitronic 50 (Armco) and other. nitrogen strengthened stainless steels.

APPLICATIONS

The high nickel and nitrogen levels provide a fully austenitic and non-magnetic weld deposit with maximum magnetic permeability of 1.01. A typical tensile strength above 600MPa is also achieved by means of the controlled level of nitrogen. A high manganese content ensures freedom from microfissuring in the ferrite-free weld metal.

Applications exploiting non-magnetic properties include welding of 316L fittings for **minesweepers** and **offshore downhole instrumentation collars.**

The fully austenitic microstructure gives excellent strength and toughness at cryogenic temperatures for joining 304L and 316L **LPG** and **LNG storage vessels**. Useful toughness is also maintained down to liquid helium temperatures -269°C (4°K) for superconducting applications. Impact testing procedures at this temperature are complex and expensive, with results of questionable validity. To qualify the toughness of weld metal for service at 4°K, the ASME Code Committee has proposed >0.53mm [21mils] at $-196^{\circ}C$ (77°K). This proposal is based on correlations between fracture toughness and Charpy data at these temperatures.

Unlike conventional 316L weld metal containing ferrite, which suffers preferential attack in concentrated **nitric acid**, the nil-ferrite alloy has excellent resistance and is suitable for deposition directly onto CMn steel to provide **corrosion resistant overlays**.

MICROSTRUCTURE

Fully austenitic.

WELDING GUIDELINES

No preheat required, and maximum interpass temperature 150°C.

ADDITIONAL INFORMATION

ASTM A262 practice C (Huey) corrosion test (immersion in boiling, 65%, nitric acid for five 48 hour periods): typical corrosion rates are 0.7–1.2µm/48hr (0.13-0.22mm/year). Stamicarbon requirement is 3.3µm/48hr.

RELATED ALLOY GROUPS

The 310L and 904L alloys may also be useful for low magnetic permeability applications.

Process	Product	Specification		
	Ultramet 316NF	BS EN E 18 15 3 L R 3 2		
MMA	Ultramet B316NF	BS EN E 18 15 3 L B 4 2		
TIG/MIG	ER316MnNF	BS EN 20 16 3 Mn N L		
FCW	Supercore 316NF	(BS EN T 18 16 5 N L R C/M 3)		

ULTRAMET 316NF

ALL-POSITIONAL RUTILE MMA ELECTRODE

PRODUCT DESCRIPTION

Rutile (low silica) flux on high purity 304L core wire.

Special control of residuals coupled with a high manganese content ensures freedom from microfissuring. Recovery is about 120% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581 (E316LMn-16) Nearest classification E 18 15 3 L R 3 2

ASME IX QUALIFICATION

QW432 F-No 5 This is nearest because the electrode does not strictly conform to AWS

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν
Min.		2.5				16.5	14.0	2.5		0.1
Max.	0.04	4.0	0.9	0.025	0.030	19.5	17.0	3.5	0.5	0.2
Typical	< 0.03	3.0	0.4	0.01	0.02	18	16	2.8	< 0.1	0.15
		1.111.4								

Maximum magnetic permeability 1.01

ALL-WELD MECHANICAL PROPERTIES

As-welded	Min.	Typical	
Tensile strength (MPa)	560	610	
0.2% proof strength (MPa)	300	430	
Elongation (%) 4	d	38	
5	d 30	35	
Reduction of area %		54	
Impact ISO-V(J) -	196°C *	60	
Lateral expansion(mm, mils) -	196°C *	0.7mm / (28mils)	

* Useful impact properties are maintained down to 4°K (-269°C) and exceeds proposed ASME Code recommendation.

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	350
kg/carton	13.5	15.0	15.0	16.5
Pieces/carton	684	402	267	189

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Ni	Cr	Cu	F *	OES (mg/m3)	OES (mg/m ³)
8	10	1.5	5	<0.2	16	1	1

* F=28% for basic coated Ultramet B316NF but this does not affect OES.

ULTRAMET B316NF

BASIC ALL-POSITIONAL MMA PIPE WELDING ELECTRODE

PRODUCT DESCRIPTION

Basic carbonate-fluoride flux on high purity 304L core wire. Special control of residuals coupled with a high manganese to ensure freedom from microfissuring.

Recovery is about 120% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581

PA/1G

(E316LMn-15)

E 18 15 3 L B 4 2

Nearest classification

ASME IX OUALIFICATION

OW432 F-No 5 This is nearest because the electrode does not strictly conform to AWS

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν
Min.		2.5				16.5	14.0	2.5		0.1
Max.	0.04	4.0	0.9	0.025	0.030	19.5	17.0	3.5	0.5	0.2
Typical	< 0.03	3.5	0.4	0.01	0.02	18	16	2.8	< 0.1	0.15
Massimasia		ويبط الطعم مست	01							

Maximum magnetic permeability 1.01.

ALL-WELD MECHANICAL PROPERTIES

As-welded	Min.	Typical
Tensile strength (MPa)	560	610
0.2% proof strength (MPa)	300	440
Elongation (%) 4d		38
5d	30	35
Reduction of area %		50
Impact ISO-V(J) -196	°C *	50
Lateral expansion(mm, mils) -196	°C *	0.6 / (24mils)

* Useful impact properties are maintained down to 4°K (-269°C) and exceeds proposed ASME Code recommendation.

TYPICAL OPERATING PARAMETERS, DC +VE

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210

ΡΔΓΚΔGING ΠΔΤΔ

Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	350
kg/carton	12.0	13.5	13.5	16.5
Pieces/carton	678	393	252	153

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition wt % typical

Fe	Mn	Ni	Cr	Cu	F *	OES (mg/m3)	OES (mg/m ³)
8	10	1.5	5	<0.2	16	1	1

* F=28% for basic coated Ultramet B316NF but this does not affect OFS.

STAINLESS STEELS

ER316MnNF

NON-MAGNETIC SOLID WIRES FOR TIG AND MIG

PRODUCT DESCRIPTION

Solid wire for TIG and MIG welding.

SPECIFICATIONS		ASME IX QUALIFICATI
AWS A5.9M	ER316LMn	QW432 F-No 6
BS EN ISO 14343-A	20 16 3 Mn N L	QW442 A-No

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	
Min.		6.0	0.30			19.0	15.0	2.5		0.12	
Max.	0.025	8.0	0.65	0.02	0.030	21.0	18.0	3.5	0.3	0.20	
Typical	0.02	7	0.5	0.01	0.02	20	16	3	0.15	0.15	
Maximum m	Maximum magnetic permeability 1.01.										

ALL-WELD MECHANICAL PROPERTIES

Typical values as welded		TIG	
Tensile strength (MPa)		732	
0.2% proof strength (MPa)		527	
Elongation (%)	4d	39	
	5d	34	
Reduction of area (%)		68	
Impact ISO-V(J)	- 100°C	140	
	- 196°C *	95	
Lateral expansion mm (mils)	- 196°C *	1.0 [40]	
Hardness cap/mid	HV	175/220	
* Useful impact properties are m	aintained dow	to 10K (-260°C) and exceeds proposed ASME Code r	acommandation

* Useful impact properties are maintained down to 4°K (-269°C) and exceeds proposed ASME Code recommendation.

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters				
TIG	Argon*	DC-	2.4	100A, 12V				
MIG	Ar+2%0,**	DC+	1.2	260A, 26V				
* Proprietary Ar and Ar-He gas mixtures with <3%CO2 also suitable.								

PACKAGING DATA

Diameter (mm)	1.0	1.2	1.6	2.4
TIG			2.5 kg tube	2.5 kg tube
MIG	15kg spool	15kg spool		

FUME DATA

MIG fume composition	(wt %) (TIG fume neg	gligible)	
_			

Fe	Mn	Cr3	Ni	Мо	Cu	OES (mg/m ³)
26	22	15	13	1.5	< 0.5	3.3

SUPERCORE 316NF

RUTILE FLUX CORED WIRE

PRODUCT DESCRIPTION

Flux cored wire made with an austenitic stainless steel sheath and rutile flux system.

Supercore 347 combines easy operability, high deposit quality and good weld bead appearance for downhand and HV welding. Metal recovery is about 90% with respect to wire.

PECIFICATIONS

SPECIFICATIONS				JALIFICATION	
AWS A5.22M	(E316LT0-1/4)	Nearest classification	QW432	F-No	
BS EN ISO 17633-A	(T 18 16 5 N L R C/M 3)	Nearest classification	QW442	A-No	
Approval	TÜV				

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Ν
Min.		2.0	0.2			17.0	14.0	2.5	0.08
Max.	0.04	3.0	1.0	0.025	0.03	19.0	16.0	3.5	0.20
Typical	0.03	2.5	0.4	0.01	0.025	18	15	3	0.12
Maximum magnetic permeability 1.01									

Maximum magnetic permeability 1.01.

ALL-WELD MECHANICAL PROPERTIES

As welded	Min.	Typical
Tensile strength (MPa)	560	605
0.2% proof strength (MPa)	300	410
Elongation (%) 4d	30	37
5d	25	34
Impact ISO-V(J) - 196°C *		50
Lateral expansion (mm) - 196°C *	0.38 (15mils)	0.6
Hardness HV		185

* Useful impact properties are maintained down to 4°K (-269°C) and exceeds proposed ASME Code recommendation.

OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO2 at 20-251/min. Proprietary gases may be used but argon should not exceed 80%. The wire is suitable for use on 100%CO2 with some loss of cosmetic appearance and increased spatter.

Current: DC+ve parameters as below (for 100%CO2 increase voltage by ~3V):

Diameter (mm)	amp-volt range	typical	stickout
1.2	130A-25V to 280A-34V	180A-29V	12-20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 12.5kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition (wt %)

Fe	Mn	Ni	Cr³	Cr⁵	Cu	F	OES (mg/m ³)
12	18	2	4	4	< 1	б	1.2

ACME IN OUAL IFICATION

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

318 STAINLESS STEELS

ALLOY TYPE

Nb stabilised, Mo-bearing stainless steel.

MATERIALS TO BE WELDED

	wrought	cast
ASTM/ASME	316Ti, 316Cb	CF10MC
DIN & BS EN	1.4571 / 1.4573	1.4579 / 1.4581
	1.4580 / 1.4583	
BS	320S31/33	318C17
UNS	S31635,	
	31640	

APPLICATIONS

Use to weld titanium or niobium-stabilised grades of molybdenum-bearing austenite stainless steels, or as an alternative electrode for unstabilised grades such as 316/316L. It is not recommended for structural service above about 400°C.

It is also used for depositing **corrosion resistance overlays** and valve seat inlays on medium carbon alloy steels, and for this reason the electrode is normally supplied with a typical ferrite content of 3-14FN.

MICROSTRUCTURE

Austenite with 3-14FN (3-12% ferrite), typically 10FN.

WELDING GUIDELINES

No preheat, maximum interpass temperature 250°C.

ADDITIONAL INFORMATION

Supermet 318 is not recommended for cryogenic applications, nor elevated temperature structural service.

RELATED ALLOY GROUPS

The 316L consumables can be used for many of the same base materials and applications (data sheet B-32). For cryogenic applications see controlled ferrite 316L consumables (data sheet B-32) and for elevated temperature see 316H (C-13) or 16.8.2 (C-12) consumables.

Process	Product	Specification	
MMA	Supermet 318	AWS E318-17	
TIG/MIG	318596	AWS ER318	
SAW	318596	AWS ER318	
	SS300	BS EN SA AF2	
	SSB	BS EN SA AF2	

SUPERMET 318

NB STABILISED MO-BEARING STAINLESS STEEL MMA ELECTRODE

PRODUCT DESCRIPTION

Rutile-aluminosilicate flux on high purity 304L core wire giving very low (<0..025%) typical carbon levels.

Designed for ease of use, exceptional weld bead appearance, and high weld metal integrity, primarily in the downhand and H-V welding positions. Smaller sizes up to 3.2mm offer excellent all-positional operability.

Low hydrogen manufacturing technology ensures high resistance to weld metal porosity.

Recovery is about 120% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

PA/1G

AWS A5.4M	E318-17	QW432	F-No 5
BS EN ISO 3581	E 19 12 3 Nb R 3 2	QW442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Nb	Cu	FN
min.		0.5				17.0	11.0	2.5	10 x C		б
max.	0.04	2.0	0.90	0.025	0.030	20.0	13.0	3.0	1.0	0.50	13
Typical	0.025	0.8	0.7	0.01	0.02	19	11.5	2.7	0.6	0.1	9

ALL-WELD MECHANICAL PROPERTIES

As welded	Min.	Typical
Tensile strength (MPa)	560	630
0.2% proof strength (MPa)	350	500
Elongation (%) 4d	25	36
5d	25	35
Reduction of area %		55
Impact ISO-V(J) +20°C		65

OPERATING PARAMETERS, DC +VE OR AC (OCV: 55V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210

PACKAG	ING	DA	TA

Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	11.4	14.1	13.2	18.0
Pieces/carton	564	387	237	165

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Ni	Cr	Мо	Cu	F	OES (mg/m ³)
8	7	1	5	0.5	<0.2	16	1

ASME IX OUAL IFICATION

318596

SOLID WIRES FOR TIG, MIG AND SAW

PRODUCT DESCRIPTION

Solid wires for TIG, MIG and sub-arc welding.

SPECIFICATIONS	FD240	ASME IX QU	JALIFICATION
AWS A5.9M BS EN ISO 14343-A	ER318 19 12 3 Nb	QW432	F-No 6
BS EN ISO 14343-B	SS318	QW442	A-No 8

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Nb	Cu	FN
Min.		1.0	0.30			18.5	11.0	2.5	10xC		3
Max.	0.07	2.0	0.65	0.02	0.030	20.0	13.0	3.0	1.0	0.3	12
Typical	0.035	1.8	0.45	0.01	0.02	19.5	11.5	2.5	0.6	0.2	10

ALL-WELD MECHANICAL PROPERTIES

Typical values as welded		TIG	
Tensile strength (MPa)		655	
0.2% proof strength (MPa)		440	
Elongation (%)	4d	42	
	5d	35	
Impact ISO-V(J)	+20°C	90	
Hardness cap/mid	HV	200/215	

TYPICAL OPERATING PARAMETERS

		Shielding	Current	Diameter (mm)	Parameters	
	TIG	Argon*	DC-	2.4	100A, 12V	
	MIG	Ar+2%02 **	DC+	1.2	260A, 26V	
	SAW	SS300 ***	DC+	2.4	350A, 28V	
*	Also required as a back purge for root runs.					
**	Also proprietary Ar and Ar-He mixtures with <3%CO.					
***	SSB also suitable.					

PACKAGING DATA

Diameter (mm)	1.2	1.6	2.0	2.4
TIG		5 kg tube	5 kg tube	5 kg tube
MIG	15kg spool			
SAW				25kg spool

FUME DATA

MIG fume composition (wt %) (TIG and SAW fume negligible)

Fe	Mn	Cr³	Ni	Мо	Cu	OES (mg/m ³)
30	12	15	11	1.5	<0.5	3.3

STAINLESS STEELS

| 141

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

317L STAINLESS STEELS

ALLOY TYPE

19%Cr-13%Ni-3.5%Mo (317L) austenitic stainless steel.

MATERIALS TO BE WELDED

ASTM/UNS	wrought	cast
ASTMIUNS	317 / \$31700	CG8M
	3171 / \$31703	ССЭМ
DIN & BS EN	51/1/ 551/05	CUSIM
BS	1.4438	
	317S16 317S12	317C16 317C12

APPLICATIONS

Use to weld 317/317L stainless steels in which the raised Mo level provides improved resistance to pitting in high chloride environments and to some acids (not nitric acid). These steels are used in marine, chemical process, papermaking, and food processing applications.

Also suitable for 316/316L and their stabilised versions when the benefits of higher molybdenum weld metal are required to maximise weld area pitting resistance.

Not suitable for structural service above about 400°C, or for cryogenic applications.

MICROSTRUCTURE

Austenite with 3-10FN (3-9% ferrite), typically 5FN.

WELDING GUIDELINES

No preheat required, and a maximum interpass of 150°C is desirable. Normally used in the as-welded condition.

ADDITIONAL INFORMATION

The 317LM and 1.4539 alloys, with 4-5%Mo, can be welded with the overmatching 904L consumables (data sheet B-40).

RELATED ALLOY GROUPS

317L falls between the lower alloyed 316L (data sheet B-32) and the higher alloyed 904L (data sheet B-40) materials.

Process	Product	Specification
MMA	Ultramet 317L	AWS E317L-16
TIG/MIG	ER317L	AWS ER317L
FCW	Supercore 317LP	AWS E317LT1-1/4

ULTRAMET 317L

ALL-POSITIONAL MMA ELECTRODE FOR 317L STAINLESS STEEL

PRODUCT DESCRIPTION

Rutile flux on high purity 304L core wire giving very low (<0.025%) typical carbon levels. A controlled addition of nitrogen, in conjunction with -3.8%Mo, provides improved pitting corrosion resistance compared to 316L. Ultramet 37L gives both welder and weld metal all the benefits of advanced rutile electrode design. These features include optimum versatility for downhand and positional welding, combined with high cosmetic finish and full volumetric weld metal integrity. The smaller electrode sizes are particularly suited to vertical and overhead welding applications including fixed pipework. Low hydrogen manufacturing technology ensures high resistance to weld metal porosity.

Recovery is about 115% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M	E317L-16
BS EN ISO 3581	E 19 13 4 N L R 3 2

ASME IX QU	ALIFICATION
QW432	F-No 5
QW442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	FN
min.		1.0				18.0	12.0	3.5		0.08	3
max.	0.04	2.5	0.90	0.025	0.030	20.0	14.0	4.0	0.50	0.20	10
Typical	0.02	1.2	0.6	0.01	0.02	19	13	3.8	0.1	0.12	5

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		550	620
0.2% proof strength (MPa)		350	470
Elongation (%)	4d	30	38
	5d	25	36
Reduction of area %			45
Impact ISO-V(J)	+20°C		55
	-50°C		30

OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

	all a second for the for the	Jost ming		
Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	12.0	13.5	13.5	18.6
Pieces/carton	669	381	225	171

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Ni	Cr	Cu	Мо	F	OES (mg/m ³)
8	6	1	б	<0.2	0.6	16	0.8

ER317L

SOLID WIRES FOR TIG AND MIG

PRODUCT DESCRIPTION

Solid wires for TIG, MIG and sub-arc welding.

SPECIFICATIONS

AWS A5.9M	ER 317, ER 317L	ASME IX QUALIFICATIO
BS EN ISO 14343-A	19 13 4 L	QW432 F-No6
BS EN ISO 14343-B	SS317, SS317L	QW442 A-No 8

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		1.0	0.30			18.5	13.0	3.0		2
Max.	0.03	2.5	0.65	0.02	0.030	20.0	15.0	4.0	0.3	10
Typical	0.015	1.5	0.4	0.01	0.02	19	14	3.5	0.15	5

ALL-WELD MECHANICAL PROPERTIES

Typical values as welded	TIG	
Tensile strength (MPa)	630	
0.2% proof strength (MPa)	450	
Elongation (%) 4d	35	
Impact ISO-V(J) +20°C	75	

TYPICAL OPERATING PARAMETERS

		Shielding	Current	Diameter (mm)	Parameters		
	TIG	Argon*	DC-	2.4	100A, 12V		
	MIG	Ar+2%0, **	DC+	1.2	260A, 26V		
*	Also required as a purge for root runs.						

** Proprietary Ar and Ar-He gas mixtures with <3%CO2 also suitable.

PACKAGING DATA

Diameter (mm)	1.0	1.2	1.6	2.4
TIG			2.5 kg tube	2.5 kg tube
MIG	15kg spool	15kg spool		

FUME DATA

MIG fume composition (wt %) (TIG fume negligible):

Fe	Mn	Ni	Cr³	Мо	Cu	OES (mg/m ³)
28	12	12	15	2	<0.5	1

SUPERCORE 317LP

ALL-POSITIONAL RUTILE FLUX CORED WIRE

PRODUCT DESCRIPTION

Flux cored wire made with an austenitic stainless steel sheath and rutile flux system. **Supercore 317LP** is designed for allpositional welding including fixed pipework but provides excellent operability in the flat and HV positions as well. Metal recovery is about 90% with respect to the wire.

SPECIFICATIONS			ASME IX QU	ALIFICATION
AWS A5.22M	E317LT1-1/4		QW432	F-No 6
BS EN ISO 17633-A	(T 19 13 4 N L P C/M 2)	Nearest classification	QW442	A-No 8
BS EN ISO 17633-B	TS317L-FB1			

CHEMICAL COMPOSITION (WELD METAL WT %)

	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	FN
min.		0.5	0.2			18.0	12.0	3.0			3
max.	0.04	2.5	1.0	0.025	0.030	20.0	14.0	4.0	0.5	0.20	10
Typical	0.03	1	0.6	0.02	0.02	19	13	3.5	0.1	0.07	б

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		550	570
0.2% proof strength (MPa)		350	440
Elongation (%)	4d	20	27
	5d	20	25
Reduction of area %			30
Impact ISO-V(J)	+20°C		55
	-50°C		45
Hardness	HV		220

OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO, or 100% CO, at 20-251/min. Proprietary gases may be used but argon should not exceed 85%.

Current: DC+ve ranges as below for Ar-20%CO₂. Welding with 100%CO₂ requires approx 3V higher:

Diameter (mm)	amp-volt range	typical	stickout
1.2	120 – 280A, 22 – 34V	180A, 29V	15 – 20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg spool.

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition (wt %)

Fe	Mn	Ni	Cr3	Cr6	Cu	F	OES (mg/m ³)
17	10	1.5	3	5	< 1	5	1

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

CRYOGENIC 308LCF CONSUMABLES

ALLOY TYPE

Controlled ferrite 308L austenitic stainless steels for joining 304L base materials used in cryogenic applications.

MATERIALS TO BE WELDED

ASTM	BS EN & DIN
304L	1.4306
304	1.4301
304LN	1.4311
CF3	1.4308
CF8	

BS	UNS
304S11	S 30403
304S15 / 16 / 31	S 30400
304561	S 30453
304C12	
304C15	

APPLICATIONS

Used to weld 18/8 stainless steels with service temperatures down to -196° C. The controlled ferrite SMAW electrodes and flux cored wires are specifically designed for cryogenic service; they are not batch selected consumables.

Applications include **pipework** and **vessels** subject **to cryogenic service (-196°C)** eg **LNG**.

Standard 308L consumables for general purpose fabrication can be found in data sheet B-30. The 308L consumables covered here are not suitable for 304/304H in elevated temperature structural applications, see data sheets C-10 and C-12.

MICROSTRUCTURE

Austenite with a controlled level of ferrite, 2-5FN (3-8FN for solid wires).

WELDING GUIDELINES

No preheat, maximum interpass temperature 250°C (300°C may be acceptable on thicker section material); no PWHT required.

For optimum impact properties use heat inputs at the higher end of the allowable ranges.

ADDITIONAL INFORMATION

There is a Technical Profile covering the use of the controlled ferrite consumables for LNG applications.

G B Holloway et al 'Stainless steel arc welding consumables for cryogenic applications.' Stainless Steel World America 2004 Conference, Houston, 2004.

RELATED ALLOY GROUPS

General purpose 308L stainless steel consumables are in data sheet B-30. Stainless steel consumables for high temperature applications on 304H can be found in data sheets C-10 or C-12.

Process	Product	Specification
MMA	Ultramet 308LCF	AWS E308L-16
	Ultramet B308LCF	AWS E308L-15
TIG	ER308LCF	AWS ER308L
CANA	ER308LCF	AWS ER308L
SAW	SS300	BS EN SA AF2
FCW	Supercore 308LCF	AWS E308LT1-1/4J

ULTRAMET 308LCF

RUTILE MMA ELECTRODE FOR CRYOGENIC 304L APPLICATIONS

PRODUCT DESCRIPTION

MMA electrode – special rutile flux coated 308L electrode on high purity 304L core wire. Versatile downhand and positional capability, **Ultramet 308LCF** has a controlled composition and ferrite content designed for cryogenic service requiring >0.38mm lateral expansion at minus 130-196°C. Also suitable for unusual occasions when 304L is specified for service up to 550°C and corrosion conditions preclude the use of 308H.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581

EN ISO 3581 E 19 9 L R 3 2

WELDING POSITIONS (ISO/ASME)

E308L-16

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				18.0	9.0			2
Max.	0.04	2.0	0.90	0.025	0.030	21.0	11.0	0.50	0.5	5
Typical	<0.025	1	0.6	0.01	0.02	18.5	10	0.1	<0.1	3

ALL-WELD MECHANICAL PROPERTIES

As-welded		Min.	typical
Tensile strength (MPa)		520	600
0.2% proof strength (MPa)		320	445
Elongation (%)	4d	35	50
	5d	30	46
Reduction of area (%)			43
Impact ISO*-V(J)	-100°C		45
	-196°C		35
Lateral expansion* (mm)	-196°C	0.38	0.50
* Batch tested for Charny latera	al expansion >0.38	3mm at -196°C	

^ Batch tested for Charpy lateral expansion >0.38mm at -196°C

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	11.4	13.5	13.5	16.2
Pieces/carton	627	414	261	159

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m ³)
8	5	5	0.8	-	< 0.2	16	1

* F=28% for basic coated Ultramet B308LCF but this does not affect the OES

ASME IX QUALIFICATION

F-No 5

A-No 8

OW432

OW442

ULTRAMET B308LCF

BASIC MMA PIPE-WELDING ELECTRODE FOR CRYOGENIC 304L APPLICATIONS

PRODUCT DESCRIPTION

MMA electrode – designed and manufactured to give high moisture resistance using a basic flux system and high purity 304L core wire. **Ultramet B308LCF** is particularly suited to the most demanding vertical and overhead welding applications including fixed pipework in the ASME 5G/6G position. Under site conditions it is tolerant to adverse wind and drafts. Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS		ASME IX QU	ALIFICATION
AWS A5.4M	E308L-15	QW432	F-No 5
BS EN ISO 3581	E 19 9 L B 4 2	QW442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				18.0	9.0			2
Max.	0.04	2.0	0.90	0.025	0.030	21.0	11.0	0.50	0.5	5
Typical	0.03	1.2	0.3	0.01	0.015	18.5	10	0.05	<0.1	3

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	typical
Tensile strength (MPa)		520	600
0.2% proof strength (MPa)		320	440
Elongation (%)	4d	35	44
	5d	30	40
Reduction of area %			60
Impact ISO-V(J)	+20°C		80-120
	-196°C		35-50
Lateral expansion * (mm)	-196°C	0.38	0.55
* Batch tested for Charpy la	iteral expans	sion >0.38mm at -196°C.	

TYPICAL OPERATING PARAMETERS, DC +VE ONLY

Diameter (mm)	2.5	3.2	4.0
min. A	60	75	100
max. A	90	120	155
PACKAGING DATA			
Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	350
kg/carton	12.0	13.5	13.5

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m ³)
8	5	5	0.8	-	< 0.2	16	1

* F=28% for basic coated Ultramet B308LCF but this does not affect the OES

ER308LCF

SOLID WIRES FOR CRYOGENIC 304L APPLICATIONS

PRODUCT DESCRIPTION

Batch selected solid wire for TIG and sub-arc welding.

SPECIFICATIONS		ASME IX QUALIFICATIO				
AWS A5.9M	ER308L	QW432 F-No 6				
BS EN ISO 14343-A	19 9 L	QW442 A-No 8				
BS EN ISO 14343-B	SS308L					

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		1.0	0.30			19.5	9.0			3
Max.	0.025	2.0	0.65	0.020	0.030	21.0	11.0	0.3	0.3	8
Typical	0.01	1.7	0.4	0.01	0.015	20	10	0.1	0.15	7

ALL-WELD MECHANICAL PROPERTIES

An unal da d	Min	Typical		
As welded	Min.	TIG	SAW + SS300	
Tensile strength (MPa)	510	605	550	
0.2% proof strength (MPa)	320	465	390	
Elongation (%) 40	30	35	41	
50	I 30	33	37	
Impact ISO-V(J) -1	30°C	110	50	
-1	96°C	80	45	
Lateral expansion * (mm) -1	96°C 0.38	1.0	0.5	

* ER308LCF SAW wire batch tested, with SS300 flux, for Charpy lateral expansion >0.38mm at -196°C.C.

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
TIG	Argon	DC-	2.4	100A, 12V
SAW	SS300	DC+	2.4	350A,30V

PACKAGING DATA

Diameter (mm)	1.6	2.0	2.4	3.2
TIG	2.5 kg tube	2.5 kg tube	2.5 kg tube	2.5 kg tube
SAW			25kg spool	25kg spool

FUME DATA

MIG fume composition (wt %) (TIG and SAW fume negligible)

Fe	Mn	Cr ³	Ni	Мо	Cu	OES (mg/m ³)
32	12	16	8	< 0.5	< 0.5	3.1

SUPERCORE 308LCF

RUTILE ALL-POSITIONAL FLUX CORED WIRE FOR CRYOGENIC 304L APPLICATIONS

PRODUCT DESCRIPTION

Supercore 308LCF has a controlled composition and ferrite content designed for cryogenic service requiring >0.38mm lateral expansion at minus 130-196°C.

Supercore 308LCF is designed for all-positional welding including fixed pipework. Metal recovery is about 90% with respect to the wire.

SPECIFICATIONS		ASME IX QUALIFICATI
AWS A5.22M	E308LT1-1/4J	QW432 F-No 6
BS EN ISO 17633-A	T 19 9 L P C/M 2	QW442 A-No 8
BS EN ISO 17633-B	TS308L-FB1	

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5	0.2			18.0	9.0			2
Max.	0.04	2.0	1.0	0.025	0.030	21.0	11.0	0.3	0.3	5
Typical	0.03	1.4	0.6	0.01	0.02	18.6	10.5	0.1	0.1	3

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		520	540
0.2% proof strength (MPa)		320	400
Elongation (%)	4d	30	50
	5d	30	46
Reduction of area %			50
Impact ISO-V(J)	+ 20°C		74
	-130°C		40
	-196°C		36
Lateral expansion * (mm)	-196°C	0.38	0.70
* Dateb testad for Charmy lateral		20mm at 10c0C	

* Batch tested for Charpy lateral expansion >0.38mm at -196°C.

OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO₂ or 100% CO₂ at 20-25l/min. Proprietary gases may be used but argon should not exceed 85%.

Diameter (mm)	amp-volt range	typical	stickout
1.2	120 – 280A, 22 – 34V	180A, 29V (downhand)	15 – 25mm
1.2	150A, 25V (positional)	15 – 20mm	15 2511111

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg (33 lbs)

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition (wt %)

Fe	Mn	Ni	Cr ³	Cr⁵	Cu	F	OES (mg/m ³)
17	10	1.5	3	5	<1	5	1

METRODE PRODUCTS I TO HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

CRYOGENIC 316LCF CONSUMABLES

ALL OY TYPE

Controlled ferrite 316L austenitic stainless steels for joining 316L base materials used in cryogenic applications.

MATERIALS TO BE WELDED

ASTM	BS EN & DIN
316L	1.4404 / 1.4401
316	1.4436
316LN	1.4406 / 1.4429
CF3M	1.4408
CF8M	1.4437
BS	UNS
316S11 / 13	S 31603
216516 / 21 / 22	S 21600

316516 / 31 / 33 316561 316[12 316C16 / 71

S 31600 S 31653

APPLICATIONS

These consumables are used for Mo bearing austenitic stainless steels with 1.5 - 3% Mo. Type 316/316L steels are widely used for their good resistance to pitting, many acids and general corrosion. . The controlled ferrite SMAW electrodes and flux cored wires are specifically designed for cryogenic service; they are not hatch selected consumables

Applications include **pipework** and **vessels** subject to cryogenic service (-196°C) eg LNG.

Standard 316L consumables for general purpose fabrication can be found in data sheet B-32. The 316L consumables covered here are not suitable for 316/316H in elevated temperature structural applications, see data sheets C-12 and C-13.

MICROSTRUCTURE

Austenite with a controlled level of ferrite, 2-5FN [3-8FN for solid wires).

WELDING GUIDELINES

No preheat, maximum interpass temperature 250°C (300°C may be acceptable on thicker section material); no PWHT required.

For optimum impact properties use heat inputs at the higher end of the allowable ranges.

ADDITIONAL INFORMATION

There is a Technical Profile covering the use of the controlled ferrite consumables for LNG applications.

G B Holloway et al 'Stainless steel arc welding consumables for cryogenic applications.' Stainless Steel World America 2004 Conference. Houston, 2004.

RELATED ALLOY GROUPS

General purpose 316L stainless steel consumables are in data sheet B-32. Stainless steel consumables for high temperature applications on 316H can be found in data sheets C-12 or C-13.

Process	Product	Specification
ММА	Ultramet 316LCF	AWS E316L-16
IVIIVIA	Ultramet B316LCF	AWS E316L-15
TIG	ER316LCF	AWS ER316L
CANA	ER316LCF	AWS ER316L
SAW	SS300	BS EN SA AF2
FCW	Supercore 316LCF	AWS E316LT1-1/4J

ULTRAMET 316LCF

RUTILE MMA ELECTRODE FOR CRYOGENIC 316L APPLICATIONS

PRODUCT DESCRIPTION

MMA electrode – special rutile flux coated 316L electrode on high purity 304L core wire. Versatile downhand and positional capability, **Ultramet 316LCF** has a controlled composition and ferrite content designed for cryogenic service requiring >0.38mm lateral expansion at minus 130-196°C. Also suitable for unusual occasions when 316L is specified for service up to 550°C and corrosion conditions preclude the use of 316H.

. Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICAT)% with resp	ect to core v	vire, 65% wit	h respect to	whole electro	ode.			
AWS A5.4 BS EN ISO	М	E316L-16 (E 19 12 3 L	R 3 2) I	Nearest classification				QV	<mark>e IX QUA</mark> V432 V442	LIFICATION F-No 5 A-No 8
WELDING P	OSITIONS	(ISO/ASME)								
PA/1G	PB/2F	PC/2G	PF/3Gu	PE/4G						
CHEMICAL	COMPOSITI	ON (WELD N	METAL WT 9	6)						
	С	Mn	Si	S	Р	Cr	Ni	Mo*	Cu	FN
Min.		0.5				17.0	11.0	2.0		2
Max.	0.04	2.0	0.90	0.025	0.030	20.0	13.0	3.0	0.5	5
Typical	<0.03	1	0.6	0.01	0.02	18	12	2.2	<0.1	3
* Does r	not conforn	n to DIN & B	S EN which r	equires Mo 2	.5 – 3.0%.					
ALL-WELD	MECHANIC	AL PROPER	TIES							
As-welded					Min	I .			typical	
	Tensile	strength (MF	Pa)	520				595		
	0.2% proof	strength (MF	Pa)	320				440		
		Elongation (%] 4d		30			43		
			5d	25				39		
	Redu	ction of area	%					48		
Impact ISO*-V[J] + 20°C			/(J) +20°C					70		
			-100°C					50		
			-196°C						30	
	Lateral ex	pansion * (m	m) -196°C	0.38				0.40		
		Hardne	ess HV						230	

* Batch tested for Charpy lateral expansion >0.38mm at -196°C.

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

	Lilling be ill bittile	(oett bot hint)		
Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	11.4	13.5	13.5	16.5
Pieces/carton	618	396	261	165

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity. For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composit	ion, wt % typical						
Fe	Mn	Cr	Ni	Мо	Cu	F*	OES (mg/m ³)
8	7	5	1	0.5	< 0.2	16	1

* F=28% for basic coated Ultramet B316LCF but this does not affect the OES.

STAINLESS STEELS

ASME IX OUALIFICATION

F-No 5

A-No 8

OW432

QW442

ULTRAMET B316LCF

BASIC MMA PIPE-WELDING ELECTRODE FOR CRYOGENIC 316L APPLICATIONS

PRODUCT DESCRIPTION

MMA electrode – designed and manufactured to give high moisture resistance using a basic flux system and high purity 304L core wire. Ultramet B316L is particularly suited to the most demanding vertical and overhead welding applications including fixed pipework in the ASME 5G/6G position. Under site conditions it is tolerant to adverse wind and drafts. Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581

[E 19 12 3 L B 4 2] Nearest classification

WELDING POSITIONS (ISO/ASME)

E316L-15

CHEMICAL COMPOSITION (WELD METAL WT %)

		Si	3	r	ur	Ni	Mo *	Cu	FN
Min	0.5				17.0	11.0	2.0		2
Max. 0.04	2.0	0.90	0.025	0.030	20.0	13.0	3.0	0.5	5
Typical <0.03	1.2	0.3	0.01	0.02	19	12	2.2	<0.1	3

DOES NOT COMOLULI TO DIM & B2 EN MUICH LEGUILES MO 5.2

ALL-WELD MECHANICAL PROPERTIES

welded		Min.	typical
Tensile strength (MPa)		520	600
0.2% proof strength (MPa)		320	470
Elongation (%)	4d	30	37
	5d	25	33
Reduction of area %			50
Impact ISO-V(J)	+ 20°C		80
	-196°C		35
Lateral expansion * (mm)	-196°C	0.38	0.45
* Batch tested for Charny late	ral ovnansion >	0.38mm at -196°C	

Batch tested for Unarpy lateral expansion >0.38mm at – 196°C.

OPERATING PARAMETERS, DC +VE ONLY

Diameter (mm)	2.5	3.2	4.0
min. A	60	75	100
max. A	90	120	155
PACKAGING DATA			
Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	450
kg/carton	12.0	13.5	17.4
Pieces/carton	669	396	255

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity. For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated guiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition	on, wt % typical						
Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m ³)
8	7	5	1	0.5	< 0.2	16	1

* F=28% for basic coated Ultramet B316LCF but this does not affect the OES.

ER316LCF

SOLID WIRES FOR CRYOGENIC 316L APPLICATIONS

PRODUCT DESCRIPTION

Solid wires for TIG and sub-arc welding.

SPECIFICATIONS			ASME IX QUALIFICATION		
AWS A5.9M BS EN ISO 14343-A		W=TIG, S=SAW	QW432 F-No 6 QW442 A-No 8		
BS EN ISO 14343-B	55316L				

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		1.0	0.30			18.0	11.0	2.5		3
Max.	0.025	2.0	0.65	0.020	0.030	20.0	14.0	3.0	0.3	8
Typical	0.01	1.4	0.5	0.01	0.015	18.5	12.8	2.6	0.15	б

ALL-WELD MECHANICAL PROPERTIES

	Typical		
Min.	TIG	SAW + SS300	
510	605	560	
320	465	400	
30	50	41	
25	45	37	
	> 100	> 45	
	> 60	40	
0.38	1.0	0.5	
	320 30 25 	Min. TIG 510 605 320 465 30 50 25 45 >60	

* ER316LCF SAW wire batch tested, with SS300 flux for Charpy lateral expansion >0.38mm at -196°C.

TYPICAL OPERATING PARAMETERS

	Shielding	Current	Diameter (mm)	Voltage
TIG	Argon	DC-	2.4	100A, 12V
SAW	SS300	DC+	2.4	350A, 28V

PACKAGING DATA

Diameter (mm)	1.6	2.0	2.4	3.2
TIG	2.5kg tube	2.5kg tube	2.5kg tube	2.5kg tube
SAW			25kg spool	

FUME DATA

Fume composition (wt%), (TIG and SAW fume negligible)

Fe	Mn	C	Ni	Мо	Cu	OES (mg/m ³)
30	12	15	11	1.5	< 0.5	3.3

SUPERCORE 316LCF

RUTILE ALL-POSITIONAL FLUX CORED WIRE FOR CRYOGENIC 316L APPLICATIONS

PRODUCT DESCRIPTION

Supercore 316LCF has a controlled composition and ferrite content designed for cryogenic service requiring >0.38mm lateral expansion at minus 130-196°C.

Supercore 316LCF is designed for all-positional welding including fixed pipework. Metal recovery is about 90% with respect to the wire.

SPECIFICATIONS

SPECIFICATIONS		ASME IX QUALIFICATION		
AWS A5.22M	E316LT1-1/4J		QW432	F-No 6
BS EN ISO 17633-A	[T 19 12 3 L P C/M 2] Nearest classification		QW442	A-No 8
BS EN ISO 17633-B	TS316L-FB1			

CHEMICAL COMPOSITION (WELD METAL WT %)

	Lu	Mo *	Ni	Cr	Р	S	Si	Mn	C	
- 2		2.0	11.0	17.0			0.2	0.5		Min.
.5 5	0.5	3.0	13.0	20.0	0.030	0.025	1.0	2.0	0.04	Max.
J.1 3	0.1	2.2	12.4	18.0	0.02	0.01	0.6	1.4	0.03	Typical
)	0. 0	3.0 2.2		18.0		0.01		1.4	0.03	Typical

Does not conform to BS EN ISO 17633-A which requires Mo 2.5 – 3.0%.

ALL-WELD MECHANICAL PROPERTIES

s welded		Min.	Typical
Tensile strength (MPa)		510	550
0.2% proof strength (MPa)		320	410
Elongation (%)	4d	30	40
	5d	25	38
Reduction of area %			45
Impact ISO-V(J)	+ 20°C		75
	-130°C		45
	-196°C		34
Lateral expansion * (mm)	-130°C		0.70
	-196°C	0.38	0.55

Batch tested for Charpy lateral expansion >0.38mm at -196°C.

OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO, or 100% CO, at 20-25I/min. Proprietary gases may be used but argon should not exceed 85%.

Current: DC+ve ranges as below for Ar-20%CO₂. Welding with 100%CO₂ requires approx 3V higher:

Diameter (mm)	amp-volt range	typical	stickout
1.2	120 – 280A, 22 – 34V 150A, 25V (positional)	180A, 29V (downhand) 160A, 26V	15 – 20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg (33 lbs)

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUMF DATA

Fume composition (wt %)

runic compositio							
Fe	Mn	Ni	Cr³	Cr⁵	Cu	F	OES (mg/m ³)
14	12	2.5	4	4	<1	5	1.2

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

904L STAINLESS STEELS

ALLOY TYPE

904L is a nominally 20%Cr-25%Ni-5%Mo-2%Cu fully austenitic alloy with good corrosion resistance.

MATERIALS TO BE WELDED

ASTM - ASME	DIN
N08904	1.4505
	1.4506
BS	1.4536
1449: 904513	1.4539
1504: 364C11 (cast)	1.4585
	1.4500 (cast)

Proprietary alloys

Uddelholm 904L 2RK65 (Sandvik) Cronifer 1925LC (VDM) 254SLX (Avesta Polarit) Uranus B6 & B6M (Creusot Loire)

Suitable for copper-free variants of the above alloys and also to overmatch leaner alloys such as 317L, 317LN, 317LM, 317LM, 1.4439, 1.4440 and S31726.

APPLICATIONS

These consumables give a fully austenitic, low carbon weld metal with molybdenum and copper, with good resistance to corrosion in sulphuric, phosphoric and other inorganic and organic acids.

They are not normally chosen for resistance to corrosion in concentrated nitric acid. For service in severe chloride pitting media, overmatching nickelbase weld metal is recommended, see alloy 625 (data sheet D-20).

It is the preferred weld metal for some lower alloy austenitics such as Creusot UHB 34L and UHB 734L for wet process phosphoric acid service.

Applications include tanks and process vessels, piping systems, agitators and rotors and cast pumps and valves for use in the fertiliser, phosphoric, sulphuric and acetic acid plants, and in salt and seawater environments. It is also used in some offshore applications, including overlays on mild and low alloy steels.

MICROSTRUCTURE

In the as-welded condition the weld metal microstructure is fully austenitic.

WELDING GUIDELINES

No preheat or PWHT is required, interpass should be controlled to 150°C maximum and heat input should also be controlled particularly with larger diameter MMA electrodes.

Process	Product	Specification	
ММА	Ultramet 904L	E385-16	
IVIIVIA	Ultramet B904L	E385-15	
TIG/MIG	20.25.4Cu	ER385	

ULTRAMET 904L

RUTILE MMA ELECTRODE FOR ALLOY 904L

PRODUCT DESCRIPTION

MMA electrode (formerly 21.26.5.CuNb.R) with a special rutile flux on low carbon, high purity austenitic stainless steel core wire. Careful control of carbon, silicon, manganese and molybdenum contents to give resistance to microfissuring. Recovery is about 130% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A	\5.4M
BS EN	ISO 3581

E385-16 E 20 25 5 Cu NI R 5 2

ASME IX QUALIFICATION QW432 F-No 5 0W442 A-No 9

WELDING POSITIONS (ISO/ASME)

PF/3Gu PE/4G

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	N
Min.		1.0				19.5	24.0	4.2	1.2		
Max.	0.03	2.5	0.90	0.02	0.030	21.5	26.0	5.2	2.0	0.5	0.25
Typical	0.02	1.2	0.55	0.015	0.02	20.5	25	4.6	1.5	0.02	0.09

ALL-WELD MECHANICAL PROPERTIES

As-welded		Min.	typical
Tensile strength (MPa)		560	620
0.2% proof strength (MPa)		320	420
Elongation (%)	4d	30	38
	5d	25	35
Reduction of area %			50
Impact ISO*-V(J)	-196°C		50
Hardness cap/mid	HV		185/200

ΤΥΡΙΓΔΙ ΩΡΕΡΑΤΙΝG ΡΑΡΑΜΕΤΕΡS DC +VE OR ΔC (OCV: 70V ΜΙΝ)

Diameter (mm)	2.5	3.2	4.0
min. A	60	75	100
max. A	90	120	155
PACKAGING DATA			
Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	350
kg/carton	12.0	13.5	14.1

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

360

For electrodes that have been exposed:

Pieces/carton

Redry 150 – 250°C/1-2h to restore to as-packed condition. Maximum 250° C, 3 cycles, 10h total.

504

Storage of redried electrodes at 50 – 200°C in holding oven or heated guiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUMF DATA

Fume composition wt % typical

Fe	Mn	Ni	Cr	Мо	Cu	F *	OES (mg/m ³)
8	8	2	7	1.5	0.5	18	0.7
* F=28% for ba	isic coated Ultram	et B904L hut thi	s does not affect	the OES			

isic coated Ultramet B904L but this does not an

213

ULTRAMET B904L

BASIC ALL-POSITIONAL MMA PIPE-WELDING ELECTRODE FOR ALLOY 904L

PRODUCT DESCRIPTION

Special basic flux on low carbon, high purity austenitic stainless steel core wire. Careful control of carbon, silicon, manganese and molybdenum contents to give resistance to microfissuring.

Recovery is about 130% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581 E385-15 E 20 25 5 Cu N L B 6 2

ASME IX QUA	LIFICATION
QW432	F-No 5
QW442	A-No 9

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Ν
Min.		1.0				19.5	24.0	4.2	1.2		
Max.	0.03	2.5	0.90	0.02	0.030	21.5	26.0	5.2	2.0	0.5	0.25
Typical	0.025	2	0.4	0.005	0.02	21	25	4.8	1.8	0.05	0.08

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	typical
Tensile strength (MPa)		560	620
0.2% proof strength (MPa)		320	440
Elongation (%)	4d	30	41
	5d	25	38
Reduction of area %			60
Impact ISO-V(J)	+ 20°C		50
Hardness cap/mid	HV		190/215

OPERATING PARAMETERS, DC +VE

Diameter (mm)	2.5	3.2	4.0
min. A	60	75	100
max. A	90	120	155

PACKAGING DATA

Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	350
kg/carton	11.4	13.5	14.1
Pieces/carton	471	359	273

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 150 – 250°C/1-2h to restore to as-packed condition. Maximum 250° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Ni	Cr	Мо	Cu	F *	OES (mg/m ³)
8	8	2	7	1.5	0.5	18	0.7

* F=28% for basic coated Ultramet B904L but this does not affect the OES.

20.25.4.Cu

SOLID WIRES FOR TIG AND MIG FOR ALLOY 904L

PRODUCT DESCRIPTION

Solid wire for TIG and MIG welding.

PECIFICATIONS	ASME IX QUA
AWS A5.9M ER385	QW432
BS EN ISO 14343-A 20 25 5	ū L QW442
BS EN ISO 14343-B SS385	

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu
Min.		1.0	0.25			19.5	24.0	4.2	1.2
Max.	0.025	2.5	0.50	0.015	0.020	21.5	26.0	5.2	2.0
Typical	0.01	1.7	0.3	0.001	0.015	20	25	4.5	1.5

ALL-WELD MECHANICAL PROPERTIES

Typical values as welded	TIG	
Tensile strength (MPa)	650	
0.2% proof strength (MPa)	490	
Elongation (%) 4d	35	
5d	32	
Impact ISO-V(J) +20°C	210	
Hardness cap/mid HV	175/195	

TYPICAL OPERATING PARAMETERS

	Shielding	Current	Diameter (mm)	Voltage			
TIG	Argon*	DC-	2.4	100A, 12V			
MIG	Ar+2%02 **	DC+	1.2	230A, 30V			
* Also required as a purge for root runs.							

** Ar-He-CO2 proprietary mixtures also suitable.

PACKAGING DATA

Diameter (mm)	0.8	1.2	1.6	2.0	2.4
TIG			2.5kg tube	2.5kg tube	2.5kg tube
MIG	15kg spool	15kg spool			

FUME DATA

MIG fume composition (wt %) (TIG fume negligible)

Fe	Mn	C ^{r3}	Ni	Мо	Cu	OES (mg/m ³)
28	13	16	20	3	2.5	2.5

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

CONSUMABLES FOR ALLOY 20

ALLOY TYPE

20%Cr-34%Ni-3.5%Cu-2.5%Mo (alloy 20) austenitic corrosion resistant alloy.

MATERIALS TO BE WELDED

ASTM

A351, A744 Grade CN-7M

BS

1504 Grade 332C11

Proprietary

Alloy 20, 20Cb, 20Cb-3 (Carpenter) Paramount P20 (Lake & Elliot) Langalloy 20V (Meighs)

APPLICATIONS

This electrode is usually made to order. It gives a fully austenitic, niobium stabilised weld metal with molybdenum and copper and a high resistance to corrosion in sulphuric acid, other mineral acids, organic acids and their mixtures. Most parent material specifications are for castings.

Applications include tanks, process piping, heat exchangers, agitators and rotors, cast pumps and valves; for use in the chemical processing, metal cleaning and pickling industries.

MICROSTRUCTURE

In the as-welded condition the microstructure is fully austenitic.

WELDING GUIDELINES

No preheat, interpass to be controlled to 150°C maximum and heat input to be controlled particularly with 4mm diameter electrodes.

Repair of alloy 20 castings may present particular problems with HAZ regions being sensitive to fissuring and weld metal increasing in crack sensitivity if silicon pick-up takes place. Troublesome castings may require buttering at very low heat input with small diameter electrodes and minimum dilution.

PWHT

Welds are normally left in the as-welded condition but castings to ASTM specifications may require solution treatment at 1125°C following major repairs.

RELATED ALLOY GROUPS

The 825 consumables (data sheet B-42) are similar high alloy corrosion resistant products and can be offered as a technically compatible alternative in some applications.

Process	Product	Specification
MMA	E320LR-15	AWS E320LR-15

E320LR-15

MMA ELECTRODE FOR ALLOY 20

PRODUCT DESCRIPTION

MMA electrode with a specially balanced basic-fluoride-rutile flux on an over-matching high purity core wire. The E320LR-15 electrode is manufactured with strict controls on the maximum carbon, silicon, sulphur and phosphorus (to optimise as-welded corrosion resistance); and also restricted ranges for manganese and niobium. This low residual (LR) electrode is intended to reduce sensitivity to microfissuring whilst maintaining excellent corrosion resistance, but interpass temperature and heat input still need to be controlled.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

SPELIFICATIONS	
AWS A5.4M	E320LR-15

WELDING POSITIONS (ISO/ASME)

		۹ 💶		
PA/1G	PB/2F	PC/2G	PF/3Gu	PE/4G

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Nb	Cu
min.		1.5				19.0	32.0	2.0	8xC	3.0
max.	0.03	2.5	0.30	0.015	0.020	21.0	36.0	3.0	0.40	4.0
Typical	0.02	2	0.2	0.005	0.01	20	34	2.5	0.3	3.5

ALL-WELD MECHANICAL PROPERTIES

As welded		Min. (1)	Typical
Tensile strength (MPa)		520	535
0.2% proof strength (MPa)			345
Elongation (%)	4d	30	36
	5d	25	30
Reduction of area (%)			37
Impact ISO-V(J)	- 20°C		117
	- 40°C		98
Hardness cap/mid	HV		156/182

(1) ASTM N08020 parent material requires TS >550MPa, PS >240MPa

OPERATING PARAMETERS, DC +VE

Diameter (mm)	2.5	3.2	4.0
min. A	60	70	90
max. A	80	110	150
PACKAGING DATA			
Diameter (mm)	2.5	3.2	4.0
Length (mm)	275	350	325
kg/carton	12.0	13.8	13.5
Pieces/carton	714	411	261

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 250°C/1-2h to restore to as-packed condition. Maximum 300° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (wt %) typical

Fe	Mn	Ni	Cr	Мо	Cu	F	OES (mg/m ³)
5	5	2	6	1	1	20	0.8

ACME IN OUR LIFECATION

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

CONSUMABLES FOR ALLOY 825

ALLOY TYPE

Cr-Ni-Mo-Cu alloy of the generic 825 type.

MATERIALS TO BE WELDED

Matching 825 materials:

ASTM/ UNS

N08825

DIN

2.4858

BS

1501 & 3072 Grade NA16

Proprietary

Incoloy 825 (Special Metals) Incoloy 825CP, cast (Special Metals) Nicrofer 4221 (Krupp VDM)

The E825L-15 MMA electrode is also suitable for the 28%Cr alloy 28 materials:

ASTM/ UNS

N08028

DIN

1.4563

Proprietary

Nicrofer 3127LC (Krupp VDM) Sanicro 28 (Sandvik)

Also suitable for lower nickel materials of the alloy 20 type.

APPLICATIONS

The consumables deposit Cr-Ni-Mo-Cu weld metal with a high corrosion resistance to organic acids and hot sulphuric acid. The high nickel content gives good resistance to stress corrosion cracking in chloride and H,S environments.

Applications include tanks and process vessels, pipework systems, heat exchangers, agitators and rotors, and cast pumps and valves for use in the chemical processing and increasingly offshore oil and gas industries. Also suitable for corrosion resistant overlays and for welding dissimilar materials.

MICROSTRUCTURE

In the as-welded condition the weld metal microstructure is fully austenitic.

WELDING GUIDELINES

No preheat required, interpass should be restricted to 150)C maximum and the heat input should be controlled particularly with 4mm and 5mm diameter electrodes.

ADDITIONAL INFORMATION

Some authorities accept or prefer overmatching type 625 weld metal (data sheet D-20) but 825 is the conventional type for welding alloy 825. Both the E825L-15 electrode and 82-50 wire are also suitable for welding the leaner alloy 20 type materials. The MMA electrode E825L-15 (but not the 82-50 wire) can also be used for welding the 28%Cr, alloy 28 type, materials.

RELATED ALLOY GROUPS

The 625 alloy (data sheet D-20) is sometimes used for welding 825 and alloy 28 materials.

Process	Product	Specification
MMA	E825L-15	DIN EL-NiCr28Mo
TIG/MIG	82-50	AWS ERNiFeCr-1

E825L-15

MMA ELECTRODE FOR AUSTENITIC ALLOY 825

PRODUCT DESCRIPTION

MMA electrode for welding 825, alloy 28 and alloy 20 type materials. Specially balanced basic-fluoride-rutile flux on high purity 825 core wire. The electrodes are designed for fixed pipework welds including the demanding ASME 56/66 positions. Careful control of carbon, manganese, silicon and nitrogen to maximise corrosion resistance in the as-welded condition and to ensure high resistance to solidification cracking and microfissuring in multipass welds. The composition is controlled to give a Pitting Resistance Equivalent (PRE) of about 40, where PRE = %Cr + 3.3%Mo.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATION	IS	ASME IX (UALIFICATION
AWS A5.4M	(E383-15)	QW432	F-No 5
	Does not strictly conform; Ni & Cu are higher in E825L-15 compared to the E383-15 classification		[This is nearest because the electrode
DIN	EL-NiCr28Mo		does not strictly conform to AWS.

WELDING POSITIONS (ISO/ASME)

PA/1G

CHEMICAL COMPOSITION (WELD METAL WT %)

	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Nb	Fe
min.		1.0				27.0	35.0	3.2	1.5		
max.	0.03	3.0	0.5	0.015	0.030	31.0	40.0	4.5	3.0	1.0	30
Typical	0.02	2	0.3	0.01	0.01	28	38	3.5	2	0.3	27

ALL-WELD MECHANICAL PROPERTIES

As welded	Min.	Typical
Tensile strength (MPa)	550	640
0.2% proof strength (MPa)	240	410
Elongation (%) 4d	30	40
5d	25	39
Reduction of area (%)		43
Impact ISO-V(J) +20°C		120
- 196°C		65
Hardness (HV)		220

OPERATING PARAMETERS, DC +VE

Diameter (mm)	2.5	3.2	4.0			
min. A	60	70	90			
max. A	80	110	150			
PACKAGING DATA						

Diameter (mm)	2.5	3.2	4.0
Length (mm)	275	325	325
kg/carton	10.8	13.8	14.1
Pieces/carton	612	387	261

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 300° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (wt %) typical

Fe	Mn	Ni	Cr	Мо	Cu	F	OES (mg/m ³)
4	5	3	7	1	1	20	0.7

82-50

SOLID TIG AND MIG WIRE FOR AUSTENITIC ALLOY 825

PRODUCT DESCRIPTION

Solid wire for TIG and MIG welding of 825 and alloy 20 type materials. The 82-50 wire only has a nominal 21%Cr and so is not suitable for alloy 28. Note MIG wire is to order only.

> ASME IX QUALIFICATION OW432

F-No 45

SPECIFICATIONS	
AWS A5.14M	ERNiFeCr-1
BS EN ISO 18274	SNi8065
Also known generica	ally as filler metal 65 (FM65)

CHEMICAL COMPOSITION	(WIRE WT %)
----------------------	-------------

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	AI	Ti	Fe
min.						19.5	38.0	2.5	1.5		0.60	22.0
max.	0.05	1.0	0.50	0.015	0.020	23.5	46.0	3.5	3.0	0.20	1.2	bal
Typical	0.02	0.5	0.3	0.005	0.015	22	40	3	2	0.1	0.8	30

ALL-WELD MECHANICAL PROPERTIES

Typical values as welded	TIG (Ar)	TIG (Ar+2%H,)
Tensile strength (MPa)	475	580
0.2% proof strength (MPa)	350	350
Elongation (%) 4d	18	39
5d	16	35
Reduction of area (%)	35	35
Hardness cap/mid HV	165/180	190/205

TYPICAL OPERATING PARAMETERS

		Shielding	Current	Diameter (mm)	Voltage			
	TIG	Argon*	DC-	2.4	100A, 12V			
	MIG	Argon	DC+ **	1.2	220A, 30V			
*	Also required as a purge for root runs. Ar+1-5%H, can prove beneficial see mechanical properties.							
**	Pulsed curi	Pulsed current may provide better arc transfer characteristics.						

PACKAGING DATA

Diameter (mm)	1.2	1.6	2.4	
TIG		2.5kg tube	2.5kg tube	
MIG (To order)	15kg spool			

FUME DATA

Fume composition (wt%), (TIG fume negligible)

Fe	Mn	C ^{r3}	Ni	Mo	Cu	OES (mg/m ³)
23	2	19	29	2	3	1.7

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

310L STAINLESS STEELS

ALLOY TYPE

Low carbon 25%Cr-20%Ni (310L) for corrosion resisting applications.

MATERIALS TO BE WELDED

BS EN / DIN

X1CrNi25 21 (1.4335)

AFNOR

Z1 CN 25 20 Z2 CN 25 20 M (cast)

Proprietary

2RE10 (Sandvik) Uranus 65 (Usinor Industeel)) Cronifer 2521LC (Krupp VDM)

APPLICATIONS

310L consumables are designed for welding special low-carbon 25%Cr-20%Ni alloys which are used for their excellent resistance to oxidising media, e.g. nitric acid. Applications range from the chemical process plant used in fertiliser production to the waste nuclear fuel reprocessing industries. It is not intended for welding standard type 310 used for heat resisting applications (see data sheet C-30).

The electrode can also be used for surfacing steels to give a deposit with properties similar to the bulk weld metal, but care should be taken to deposit sufficient layers to eliminate any effects of dilution.

The low carbon fully austenitic deposit has excellent cryogenic toughness and it can be used as an alternative to 308L/316L types for welding conventional austenitic materials where superior impact values are required at temperatures at or below -196°C.

MICROSTRUCTURE

Fully austenitic.

WELDING GUIDELINES

No preheat is required. Owing to the inherent hot cracking susceptibility of fully austenitic weld metal it is desirable to keep interpass temperature below 150°C and heat input below 1.5kJ/mm..

RELATED ALLOY GROUPS

The standard 310 alloy, with 0.1%C (data sheet C-30) is related but is used for entirely different high temperature applications and the two alloys cannot be interchanged.

The 316NF consumables (data sheet B-33) and the Ultramet B310MoLN electrode can be used for similar corrosion resisting applications.

PRODUCTS AVAILABLE

Process	Product	Specification
MMA	25.20.L.R	None

165

25.20.L.R

MMA ELECTRODE FOR 310L STAINLESS STEEL

PRODUCT DESCRIPTION

Special low silica basic rutile flux on low carbon stainless steel core wire.

Detrimental residual elements including silicon are kept to low levels for optimum corrosion performance.

Coupled with raised manganese, these features also ensure excellent resistance to microfissuring hot cracking. Suitable for all-positional welding up to 3.2mm diameter.

Recovery is about 140% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

There are no national specifications for this electrode.

ASME	IX	QU	AL	IFI	CA	тю	Ν

QW432 F-No --OW442 A-No --

Approvals: Approved for welding equivalent parent material Uranus 65 by independent tests.

PE/4G

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Nb	Cu
min.		4.0				24.0	19.0			
max.	0.040	7.0	0.4	0.020	0.025	26.0	22.0	0.2	0.3	0.3
Typical	0.03	5	0.3	0.008	0.01	25	21	0.1	<0.1	0.08

ALL-WELD MECHANICAL PROPERTIES

welded	Typical	
Tensile strength (MPa)	520	
0.2% proof strength (MPa)	350	
Elongation (%) 4d	37	
5d	30	
Reduction of area (%)	55	
Impact ISO-V(J) - 196°C	90	
Hardness (HV)	170	

ALL-WELD CORROSION PROPERTIES

The weld metal has been subjected to the Huey test (ASTM A262 practice C: 5 x 48hr periods in boiling 65% nitric acid). The corrosion rates were as follows:

Condition	Corrosion rate	Selective attack
As-welded	0.40 µm/48hr (= 0.07mm or 3 mils/year)	< 0.01mm
PWHT 815°C/2hrs	0.73 µm/48hr (= 0.13mm or 5 mils/year)	< 0.13mm
DPERATING PARAMETERS, DC +	/E OR AC (OCV: 70V MIN)	
Diameter (mm)	3.2	4.0
min. A	75	100
max. A	120	155
PACKAGING DATA		
Diameter (mm)	3.2	4.0
Length (mm)	350	350
kg/carton	13.5	13.2
Pieces/carton	318	192

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity. For electrodes that have been excosed:

Redry 150 - 200°C/1-2h to restore to as-packed condition. Maximum 250° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (wt %) typical

Fe	Mn	Ni	Cr	Cu	F	OES (mg/m ³)
9	10	2	7.5	<0.2	18	0.6

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

310MoLN STAINLESS STEELS

ALLOY TYPE

25%Cr-22%Ni-2.5%Mo-0.15%N (alloy 310MoLN) austenitic corrosion resistant alloy.

MATERIALS TO BE WELDED

AISI

310MoLN

AFNOR Z1 CND 25.22.Az

UNS

S31050

DIN/EN

1.4465 (X2CrNiMoN 25-25-2) 1.4466 (X1CrNiMoN 25-22-2)

Proprietary

Uranus 25 22 2 (Usinor Industeel) 2RE69, 3R60U.G (Sandvik) Cronifer 25.25.LCN (VDM) HR3ELM (Sumitomo)

APPLICATIONS

Ultramet B310MoLN is used primarily for welding similar wrought or cast 310MoLN parent alloys. It is particularly suited to positional welding, including fixed pipework qualified in the ASME 6G position, in material thickness from 3mm up to the heaviest sections.

The 310MoLN alloy has very good resistance to pitting, intergranular corrosion, chloride bearing media and nitric acid. The main applications of the alloy are in the production and processing of urea and sulphuric acid.

Applications are mainly for joining matching steels although it can also be used for surfacing.

MICROSTRUCTURE

In the as-welded condition the microstructure is fully austenitic. Typical magnetic permeability is <1.01.

WELDING GUIDELINES

No preheat required and interpass should be controlled to 150°C maximum. It is also desirable for heat input to be limited to a maximum of 1.5kJ/ mm, particularly with 4mm diameter electrodes.

ADDITIONAL INFORMATION

The alloy has excellent resistance to the ASTM A262 practice C corrosion test (Huey test). Typically required to meet <0.16g/m²/h (0.18mm/year), and selective attack <0.07mm.

PRODUCTS AVAILABLE

Process	Product	Specification
MMA	Ultramet B310MoLN	BS EN: E 25 22 2 NLB

ULTRAMET B310MoLN

MMA ELECTRODE FOR ALLOY 310 MOLN

PRODUCT DESCRIPTION

MMA electrode with a specially balanced basic carbonate-fluoride flux on high purity stainless steel core wire. Low silicon and high manganese levels ensure freedom from microfissuring.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

BS EN ISO 3581

E 25 22 2 N L B 4 2

ASME IX QUALIFICATION

QW432 F-No 5 (This is nearest because the electrode does not strictly conform to AWS)

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Ν	Cu
min.		3.0				24.0	20.0	2.0	0.10	
max.	0.04	5.0	1.0	0.025	0.030	27.0	23.0	3.0	0.20	0.50
Typical	0.03	4	0.4	0.005	0.02	25	22	2.2	0.15	0.05

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		510	640
0.2% proof strength (MPa)		320	430
Elongation (%)	4d		37
	5d	25	36
Reduction of area (%)			50
Impact ISO-V(J)	- 50°C		75
Hardness cap/mid	HV		185/205

OPERATING PARAMETERS, DC +VE

Diameter (mm)	2.5	3.2	4.0
min. A	60	75	100
max. A	90	120	155

PACKAGING DATA

Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	350
kg/carton	11.4	13.8	13.8
Pieces/carton	465	375	21.0

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 300° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (v	wt %)	tvpical
---------------------	-------	---------

Fe	Mn	Ni	Cr	Cu	F	OES (mg/m ³)
9	10	2	7.5	<0.2	18	0.6

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

20.18.6.CU.R

PRODUCT DESCRIPTION

MMA electrode with basic-rutile flux system, including alloying, made on high purity stainless steel core wire. Recovery is about 130% with respect to core wire and 65% with respect to the whole electrode.

SPECIFICATIONS

There are no national specifications for this electrode.

MATERIALS TO BE WELDED

ASTM

A351 CK3MCuN (cast). A182 F44. S31254 **BS EN**

DJLN

1.4547

Proprietary

254SMO (Outokumpu)

APPLICATIONS

This electrode deposits weld metal that closely matches the composition of equivalent 6%Mo superaustenitic parent material, usually castings, and is used only when post weld solution annealing is applied.

As deposited weld metal of this type has inherent Mo segregation and it is essential that welds are fully solution annealed to obtain the excellent pitting resistance this alloy is capable of. When solution annealing is not possible the use of over-matching nickel base electrodes (Nimrod 625KS, Nimrod C22KS or Nimrod C59KS) is normal practice.

The main applications for this electrode are in foundry repair or fabrication of castings for use in process plant where high resistance to chloride pitting and crevice corrosion is required. Applications include: heat exchangers and pipework for seawater contaminated oil and gas plant, equipment for pulp bleaching, gas cleaning systems (FGD), and components handling acid solutions with halides.

MICROSTRUCTURE

Fully austenitic.

HEAT TREATMENT

To eliminate segregation this weld metal must be solution annealed. High Mo austenitic alloys are prone to intermetallic phase formation (sigma, chi) at 600-1000°C. This damage could occur in the HAZ and weld metal during welding but will certainly occur as the temperature rises slowly during PWHT.

A minimum temperature of 1200°C is required to dissolve these intermetallic phases and some authorities require >1230°C. This is followed by water quenching to prevent further intermetallic formation on cooling.

WELDING GUIDELINES

Preheat not required. Interpass temperature is restricted to minimise the possibility of hot cracking in the parent HAZ. In susceptible castings, buttering with 100°C maximum interpass temperature and <1.0kJ/mm heat input may be required prior to filling the joint using more relaxed parameters.

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Ρ	Cr	Ni	Мо	Cu	Ν	PRE
Min.		0.2	0.2			19.5	17.5	6.0	0.5	0.15	40
Max.	0.03	1.0	0.8	0.02	0.03	21.0	20.0	7.0	1.0	0.28	
Typical	0.02	0.8	0.3	0.01	0.02	20.5	18.5	6.5	0.7	0.2	44
PRE = Cr	r + 3.3N	Ao + 16	5N								

ALL-WELD MECHANICAL PROPERTIES

Solution annealed 1200-1250°C/2h + WQ	min*	typical
Tensile strength (MPa)	550	716
0.2% proof strength (MPa)	260	380
Elongation (%) 4d	35	50
5d		47
Reduction of area %		54
Impact ISO-V(J) - 50°C		>120
Hardness (HV)		200
* Minimum properties for CK3MCuN castings.		

OPERATING PARAM	ETERS, DC +VE OI	R AL (ULV: 70V MINJ
Diameter (mm)	3.2	4.0
min. A	80	130
max. A	110	160
PACKAGING DATA		
Diameter (mm)	3.2	4.0
Length (mm)	350	350
kg/carton	15.0	14.1
Pieces/carton	378	201

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200–300°C/1-2h to restore to as-packed condition. Maximum 250° C, 3 cycles, 10h total.

Storage of redried electrodes at 50-200°C in holding oven or 50-150°C in heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, >18°C.

FUME DATA

Fume composition, wt % typical:

Fe	Mn	Ni	Cr	Мо	Cu	F	OES (mg/m ³)
8	8	7	2	1.5	1	18	0.7

309L STAINLESS STEELS

ALLOY TYPE

24%Cr-13%Ni (309L) austenitic stainless for dissimilar joint buffer layers etc.

MATERIALS TO BE WELDED

Mainly used under high dilution conditions, particularly dissimilar welds between stainless and CMn steels.

APPLICATIONS

There are 3 main areas of application:

Buffer layers and clad steels: Overlays on CMn, mild steel or low alloy steels and for joining 304L/321 clad plate. Subsequent layers are deposited with an electrode chosen to match the cladding, eg 308L, 347.

Dissimilar joints: Tolerance to dilution is exploited in joining stainless types 410, 304L, 321 and 316L to mild and low alloy steels such as stiffeners, brackets and other attachments. Service temperatures above 400°C are normally avoided. It is also used for welding 12%Cr 'utility ferritics' such as Cromweld 3CR12, to itself and other steels.

Similar metal joints: Wrought and cast steels of 23Cr-12Ni type (eg ASTM 309 and CH8, BS 309S24 and 309C30) can be welded if the service requirement is corrosion resistance below 400°C. However, for high temperature structural service, weld metal with controlled higher carbon and lower ferrite should be used (Thermet 309CF – data sheet C-21).

MICROSTRUCTURE

Austenite with ferrite in the range 8-20FN. The solid wires tend to have lower ferrite than the MMA and FCW consumables, the ferrite falling in the range 8-15FN for the solid wires.

WELDING GUIDELINES

Preheat and interpass temperatures depend on base material hardenability. For guidance, no preheat on mild steels; up to 250°C on hardenable steels.

ADDITIONAL INFORMATION

There is a Technical Profile on sub-arc welding with 309592 and also additional information covering the Supercore flux cored wires.

RELATED ALLOY GROUPS

The 309Mo consumables (B-51), 307 (E-21) and 29.9 types (E-22) cover similar applications. For high temperature applications refer to the controlled ferrite 309 types (C-21) and high carbon 309H (C-22) for matching high carbon cast alloys.

PRODUCTS AVAILABLE

Process	Product	Specification
	Supermet 309L	AWS E309L-17
	Ultramet 309L	AWS E309L-16
MMA	Ultramet B309L	AWS E309L-15
	Ultramet 309LP	AWS E309L-16
TIG	309592	AWS ER309L
MIG	Supermig 309LSi	AWS ER309LSi
	309592	AWS ER309L
SAW	SS300	BS EN SA AF2
	SSB	BS EN SA AF2
	Supercore 309L	AWS E309LT0-1/4
FCW	Supercore 309LP	AWS E309LT1-1/4

SUPERMET 309L

GENERAL PURPOSE RUTILE 309L MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode - rutile aluminosilicate flux on high purity 304L core wire giving very low typical carbon level. 'Low hydrogen' manufacturing technology ensures high resistance to weld metal porosity. 'Supermet Technology' gives acid rutile operability combined with controlled silicon content for maximum cracking/corrosion resistance. Designed for ease of use, exceptional weld bead appearance and high weld metal integrity, primarily in the downhand and HV positions; smaller sizes offer all-positional operability.

Recovery is about 115% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

		ASMEIAQ
VS A5.4M	E309L-17	QW432
EN ISO 3581	E 23 12 L R 3 2	QW442
/ALS	TÜV. ABS	

WELDING POSITIONS [ISO/ASME]

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				22.0	12.0			8
Max.	0.04	2.5	0.90	0.025	0.030	25.0	14.0	0.5	0.5	20
Typical	0.02	0.8	0.6	0.01	0.02	24	13	0.05	0.1	15

ALL-WELD MECHANICAL PROPERTIES

As-welded	Min.	Typical
Tensile strength (MPa)	560	620
0.2% proof strength (MPa)	320	500
Elongation (%) 4d	30	40
5d	30	36
Reduction of area %		50
Impact ISO*-V(J) +20°C		55
Hardness (HV)		220

ΤΥΡΙΓΑΙ ΩΡΕΡΑΤΙΝG ΡΑΡΑΜΕΤΕΡS DC +VE OR AC (OCV: 50/ MIN)

THICKE OF ERATING TA	INAME FERS, DC - VE ON	AC (OCV. SOV MIN)		
Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	450	450
kg/carton	11.4	13.5	18.3	18.0
Pieces/carton	579	354	258	171

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition wt % typical

Fe	Mn	Cr	Ni	Mo	Cu	F*	OES (mg/m ³)
9	б	7	1	0.1	< 0.2	17	0.7

* F=28% for basic coated Ultramet B309L but this does not affect the OES.

ACME IN OUAL IEICATION

ULTRAMET 309L

ALL-POSITIONAL RUTILE 309L MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode – rutile flux coated 309L electrode on high purity 304L core wire. Ultramet has all the benefits of an advanced rutile flux design – this includes optimum versatility for downhand welding with high cosmetic finish and weld metal integrity; and all-positional welding with the 2.5/3.2mm electrodes including fixed pipework. The 2.5mm electrodes are also designed for open but root welding.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M
BS EN ISO 35
ΔΡΡΡΩΙΛΑΙ S

E309L-16 581 E 23 12 L R 3 2 TÜV

ASME IX QUALIFICATION				
QW432	F-No 5			
0W442	A-No 8			

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				22.0	12.0			8
Max.	0.04	2.5	0.90	0.025	0.030	25.0	14.0	0.50	0.5	20
Typical	0.03	0.8	0.6	0.01	0.02	23.5	13	0.1	0.1	15

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		560	595
0.2% proof strength (MPa)		320	495
Elongation (%) 40	4d	30	41
	5d	30	38
Reduction of area %			59
Impact ISO-V[J]	- 20°C		45
Hardness (HV)			230

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
IIIdX. A	90	120	001	210

PACKAGING DATA

Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	11.4	13.5	13.5	18.0
Pieces/carton	660	393	252	165

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F*	OES (mg/m ³)
9	б	7	1	0.1	< 0.2	17	0.7

* F=28% for basic coated Ultramet B309L but this does not affect the OES.

ULTRAMET B309L

BASIC COATED 309L MMA ELECTRODE FOR PIPE-WELDING

PRODUCT DESCRIPTION

MMA electrode – designed and manufactured to give high moisture resistance using a basic flux system and high purity 304L core wire. Ultramet B309L is particularly suited to the most demanding vertical and overhead welding applications including fixed pipework in the ASME 5G/6G position. Under site conditions it is tolerant to adverse wind and drafts. Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

 AWS A5.4M
 E309L-15

 BS EN ISO 3581
 E 23 12 L B 4 2

 BS 2926
 23.12 L B

 DIN 8556
 E 23 12 L B 20+

ASME IX QU	ALIFICATION
QW432	F-No 5
0W442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				22.0	12.0			8
Max.	0.04	2.5	0.90	0.025	0.030	25.0	14.0	0.50	0.5	20
Typical	0.03	1.2	0.3	0.01	0.02	23.5	13	0.1	0.1	15

ALL-WELD MECHANICAL PROPERTIES

ALL WELD MECHANICALI NOT ENTI			
As welded		Min.	Typical
Tensile strength (MPa)		560	630
0.2% proof strength (MPa)		320	490
Elongation (%) 4	4d	30	36
	5d	30	34
Reduction of area %			45
Impact ISO-V(J)	+20°C		75
	-50°C		50

TYPICAL OPERATING PARAMETERS, DC +VE ONLY

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				

5.0 ** Diameter (mm) 2.5 4.0 * 3.2 Length (mm) 300 350 350/450 450 kg/carton 12.0 13.8 14.1/17.4 17.1 Pieces/carton 675 402 267/267 159 350mm is the standard length for 4.0mm diameter; 450mm is available to order.

350mm is the standard length for 4.0mm
 5.0mm diameter made to order.

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F*	OES (mg/m ³)
9	6	7	1	0.1	< 0.2	17	0.7

* F=28% for basic coated Ultramet B309L but this does not affect the OES.

ULTRAMET 309LP

ALL-POSITIONAL PIPE WELDING AND ROOT WELDING ELECTRODE

PRODUCT DESCRIPTION

MMA electrode – rutile flux on high purity 309L core wire giving very low typical carbon level. Ultramet 309LP is a fully allpositional electrode capable of the most demanding fixed pipework applications including ASME 5G/6G. The Ultramet 309LP electrode has also been designed to deposit single-side root runs without the need for a gas purge. The electrode is also suitable for vertical-down welding on thin sheet material.

Recovery is about 105% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581

ASME IX QUALIFICATION				
QW432	F-No 5			
QW442	A-No 8			

WELDING POSITIONS (ISO/ASME)

E309L-16

E 23 12 L R 1 1

CHEMICAL COMPOSITION (WELD METAL WT %)

	C	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				22.0	12.0			8
Max.	0.04	2.5	0.90	0.025	0.030	25.0	14.0	0.50	0.5	20
Typical	0.03	0.8	0.6	0.01	0.02	23.5	13	0.1	0.1	15

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		560	635
0.2% proof strength (MPa)		320	525
Elongation (%)	4d	30	40
	5d	30	38
Reduction of area %			45
Impact ISO-V(J)	+20°C		47
	-20°C		42
Hardness (HV)			230

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.0	3.2						
min. A	50	75						
max. A	80	120						
PACKAGING DATA								
Diameter (mm)	2.0	3.2						
Length (mm)	300	350						
kg/carton	11.7	12.0						
Pieces/carton	1090	453						

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F*	OES (mg/m ³)
9	6	7	1	0.1	< 0.2	17	0.7

* F=28% for basic coated Ultramet B309L but this does not affect the OES.

309S92, SUPERMIG 309LSi

309L SOLID WIRES FOR TIG, MIG AND SAW

PRODUCT DESCRIPTION

Solid wires for TIG, MIG and sub-arc welding.

SPECIFICATIONS

ST LCH ICATIONS			ADINE IN CO.	ALL ICATION
	309592 (TIG & sub-arc)	Supermig 309LSi (MIG)	QW432	F-No 6
AWS A5.9M	ER309L	ER309L Si	QW442	A-No 8
BS EN ISO 14343-A	23 12 L	G 23 12 L Si		
BS EN ISO 14343-B	SS309L	SS309L Si		
APPROVALS	ΤÜV			

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si *	S	Р	Cr	Ni	Мо	Cu	FN
Min.		1.0	0.30			23.0	12.0			8
Max.	0.03	2.5	0.65	0.020	0.030	25.0	14.0	0.3	0.3	20
Typical	0.015	1.7	0.5	0.005	0.015	23.5	13	0.1	0.15	12
* Cuno			- O CE 100	م بالمعند بيد /	0.00/					

* Supermig 309LSi: Si range is 0.65 – 1.0%, typically 0.8%.

ALL-WELD MECHANICAL PROPERTIES

As welded		Typical				
As welueu		TIG	MIG			
Tensile strength (MPa)		590	560			
0.2% proof strength (MPa)		450	430			
Elongation (%)	4d	43	42			
Eluligation (%)	5d	41	39			
Reduction of area (%)		55	56			
Impact ISO-V(J)	+ 20°C	>200	100			
	- 20°C		80			
	- 75°C	>150				
Hardness cap/mid	HV	205/225	175/215			

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters				
TI	IG Argon*	DC-	2.4	100A, 12V				
M	IG Ar+2%0,**	DC+	1.2	260A, 26V				
SA	N SS300***	DC+	2.4	350A,28V				
*	* Also required as a purge for root runs.							
**	Also proprietary Ar and Ar-He gas mixtures with < 3%CO2.							

*** SSB also suitable.

PACKAGING DATA

Diameter (mm)	0.8	1.0	1.2	1.6	2.0	2.4	3.2
TIG (309592)				5 kg tube	5 kg tube	5 kg tube	5 kg tube
MIG (Supermig 309LSi)	15kg spool	15kg spool	15kg spool				
SAW (309S92)				25kg spool		25kg spool	25kg spool

FUME DATA

MIG fume composition (wt %) (TIG and SAW fume negligible)

Fe	Mn	Cr ^a	Ni	Мо	Cu	OES (mg/m3)
32	12	20	11	< 0.5	< 0.5	2.5

Δ5ΜΕΙΧ ΟΠΑΙ ΙΕΙΓΑΤΙΟΝ

SUPERCORE 309L, 309LP

RUTILE FLUX CORED WIRES

PRODUCT DESCRIPTION

Flux cored wires – the wires are made with an austenitic stainless steel sheath and rutile flux system. Supercore 309L combines easy operability, high deposit quality and exceptional weld bead appearance for downhand and HV welding. Supercore 309LP is designed for all-positional welding including fixed pipework. Metal recovery is about 90% with respect to the wire.

SPECIFICATIONS

SPECIFICATIONS				ASME IX QU	QUALIFICATION	
	Supercore 309L	Supercore 309LP		QW432	F-No 6	
AWS A5.22M	E309LT0-1/4	E309LT1-1/4		QW442	A-No 8	
BS EN ISO 17633-A	T 23 12 L R C/M 3	T 23 12 L P C/M 2				
BS EN ISO 17633-B	TS309L-FB0	TS309L-FB1				
Approvals	TÜV, LRS	TÜV, ABS, DNV				

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				22.0	12.0			12
Max.	0.04	2.0	1.0	0.025	0.030	25.0	14.0	0.3	0.3	22
Typical	0.03	1.3	0.6	0.02	0.02	24	12.5	0.1	0.1	15

ALL-WELD MECHANICAL PROPERTIES

Min.	Typical
520	560
320	445
30	40
25	36
	52
	65 *
	55 *
	205
	520 320 30 25

* These values are for Supercore 309LP. Values for Supercore 309L are 45J at +20°C, 40J at -20°C.

OPERATING PARAMETERS

Shielding gas: Either 80%Ar-20%CO2 or 100% CO2 shielding gas at 20-25l/min. Proprietary gases may be used but argon should not exceed 85%

Current: DC+ve ranges as below for Ar-20%CO2. Welding with 100%CO2 requires approx 3V higher:

Diameter (mm)	amp-volt range	typical	stickout
1.2	120 – 280A, 22 – 34V	180A, 29V	15 – 20mm
1.2P	120 – 250A, 22 – 32V	150A, 25V	15 – 20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition (wt %)

Fe	Mn	Ni	Cr ³	Cr⁵	Cu	F	OES (mg/m ³)
9	4	1	6	1	<1	15	1.2

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

309Mo STAINLESS STEELS

ALLOY TYPE

23%Cr-13%Ni-2.5%Mo (309Mo) austenitic stainless steel.

MATERIALS TO BE WELDED

Mainly used under high dilution conditions, particularly dissimilar welds between stainless and CMn steels. There are no comparable base materials.

APPLICATIONS

There are 3 main areas of application:

Buffer layers and clad steels: Overlays on CMn, mild steel or low alloy steels and for joining 316L clad plate. Subsequent layers are deposited with an electrode chosen to match the cladding, eg 316L, 318. Also as a buffer layer prior to hardsurfacing with chromium carbide types.

Dissimilar joints: Tolerance to dilution is exploited in joining stainless types 410, 304L, 321 and 316L to mild and low alloy steels such as stiffeners, brackets and other attachments. Service temperatures above 300°C are normally avoided. For some of these applications a more economic alternative may be suitable, eg 309L, 307.

Hardenable steels: The high level of alloying and ferrite level tolerates dilution from a wide range of alloyed and hardenable steels to give crack-free welds.

MICROSTRUCTURE

Austenite with ferrite normally in the range 10-30FN.

WELDING GUIDELINES

Preheat and interpass temperatures depend on base material hardenability. For guidance, no preheat on mild steels, up to 250°C on hardenable steels.

ADDITIONAL INFORMATION

There is a Technical Profile available on sub-arc welding with 309Mo. There is also additional information available covering the Supercore flux cored wires.

RELATED ALLOY GROUPS

The 309L consumables (B-50), 307 consumables (E-21) and 29.9 consumables (E-22) cover a similar range of applications.

PRODUCTS AVAILABLE

Process	Product	Product Specification		
MMA	Supermet 309Mo	AWS E309LMo-17		
	Vertamet 309Mo	AWS E309LMo-17		
TIG/MIG	ER309Mo	EN ISO 23 12 2 L		
	ER309Mo	EN ISO 23 12 2 L		
SAW	SS300	EN ISO SA AF2 64		
	SSB	EN ISO SA AF2		
FCW	Supercore 309Mo	AWS E309LMoT0-1/4		
	Supercore 309MoP	AWS E309LMoT1-1/4		

SUPERMET 309Mo

GENERAL PURPOSE RUTILE 309MO MMA ELECTRODE

PRODUCT DESCRIPTION

Acid rutile electrode made on nearly matching austenitic steel core wire.

Moisture resistant coating gives sound porosity-free deposits.

Recovery is about 120% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M **BS EN ISO 3581** E309LMo-17 E 23 12 2 L R 3 2

ASME IX QU	ALIFICATION
QW432	F-No 5
QW442	A-No 8

ļ

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				22.0	12.0	2.0		10
Max.	0.04	2.5	0.9	0.025	0.030	25.0	14.0	3.0	0.5	30
Typical	0.02	0.8	0.6	0.01	0.02	23.5	12.5	2.5	0.05	25

ALL-WELD MECHANICAL PROPERTIES

As-welded		Min.	Typical
Tensile strength (MPa)		560	680
0.2% proof strength (MPa)		350	510
Elongation (%)	4d	30	37
	5d	30	35
Reduction of area %			40
Impact ISO*-V(J)	+20°C		50
Hardness (HV)			220

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210

PALKA	AGI	NG L	AIA
D.			r

Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	450	450
kg/carton	12.0	13.2	17.7	18.0
Pieces/carton	609	336	246	162

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life.

Direct use from tin is satisfactory for longer than a working shift of 8h.

Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity. For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Ni	Cr	Cu	F *	OES (mg/m ³)
9	б	1	7	< 0.5	17	0.7

* F=28% for basic coated Ultramet B309Mo but this does not affect the OES.

VERTAMET 309Mo

RUTILE VERTICAL-DOWN 309MO MMA ELECTRODE

PRODUCT DESCRIPTION

Rutile-aluminosilicate flux on high purity 309L core wire giving very low typical carbon levels. 'Low hydrogen' manufacturing technology ensures high resistance to weld metal porosity. The electrode is designed for all-positional use where the emphasis is on fast welding speeds achieved by the vertical-down welding technique (BS EN 287-1 PG position). For fillet and lap joints in thinner sheet material, an added advantage is reduced distortion resulting from the lower heat input of vertical-down welding. Although designed primarily for vertical-down it can be successfully used in all other positions.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M	E309LMo-17
BS EN ISO 3581	E 23 12 2 L R 1 1

SME IX QUALIFICATION				
QW432	F-No 5			
QW442	A-No 8			

A

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				22.0	12.0	2.0		10
Max.	0.04	2.5	0.90	0.025	0.030	25.0	14.0	3.0	0.5	30
Typical	0.02	0.8	0.8	0.01	0.02	23	12	2.4	0.1	15

ALL-WELD MECHANICAL PROPERTIES

As welded	Min.	Typical
Tensile strength (MPa)	560	580
0.2% proof strength (MPa)	350	380
Elongation (%) 4d	30	42
- 5d	30	38
Reduction of area %		50

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 45V MIN)

Diameter (mm)	2.5	3.2
min. A	60	75
max. A	90	120
Typical vertical-up	≈65	≈80
Typical vertical-down	≈85	≈110

PACKAGING DATA

Diameter (mm)	2.5	3.2
Length (mm)	300	300
kg/carton	12.9	12.9
Pieces/carton	837	467

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life.

Direct use from tin is satisfactory for longer than a working shift of 8h.

Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Ni	Cr	Cu	F *	OES (mg/m ³)
9	6	1	7	< 0.5	17	0.7

* F=28% for basic coated Ultramet B309Mo but this does not affect the OES.

ER309Mo

SOLID 309Mo WIRES FOR TIG, MIG AND SAW

PRODUCT DESCRIPTION

Solid wire for TIG, MIG and sub-arc welding.

SPECIFICATIONS

AWS A5.9M	(ER309LMo)	Nearest classification
EN ISO 14343-A	23 12 2 L	
EN ISO 14343-B	(SS309LMo)	Nearest classification

ASME IX QUALIFICATION

 QW432
 F-No.6

 QW442
 A-No.8

 Most relevant F & A No because wire does not conform to AWSA5.9

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		1.0	0.30			21.0	11.0	2.0		5
Max.	0.03	2.5	0.65	0.02	0.030	25.0	15.5	3.5	0.3	20
Typical	0.015	1.7	0.5	0.005	0.015	22	14.5	2.7	0.2	10

ALL-WELD MECHANICAL PROPERTIES

As welded		TIG	
Tensile strength (MPa)		610	
0.2% proof strength (MPa)		440	
Elongation (%)	4d	35	
	5d	31	
Reduction of area %		54	
Impact ISO-V(J)	+20°C	> 90	
Hardness cap/mid (HV)		205/220	

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
TIG	Argon	DC-	2.4	100A, 12V
MIG	Ar+2%0,*	DC+	1.2	260A, 26V
SAW	SS300**	DC+	2.4	350A,28V

* Proprietary Ar and Ar-He gas mixtures with <3%CO2 also suitable.

** SSB also suitable.

PACKAGING DATA

TIG 2.5 kg tube 2.5 kg tub	Diameter (mm)	0.8	1.0	1.2	1.6	2.0	2.4	3.2
	TIG				2.5 kg tube	2.5 kg tube	2.5 kg tube	2.5 kg tube
CANN DEFENSION	MIG	15kg spool	15kg spool	15kg spool				
SAW 25kg spool	SAW						25kg spool	25kg spool

FUME DATA

MIG fume composit	on (wt %) (TIG and	SAW fume negligible)
-------------------	--------------------	----------------------

Fe	Mn	Cr ³	Ni	Мо	Cu	OES (mg/m ³)
32	12	20	11	1.5	<0.5	2.5

SUPERCORE 309Mo, 309MoP

RUTILE FLUX CORED WIRES

PRODUCT DESCRIPTION

Flux cored wires made using an austenitic stainless steel sheath and rutile flux system. Supercore 309Mo combines easy operability, high deposit quality and exceptional weld bead appearance for downhand and HV welding. Supercore 309MoP is designed for all-positional welding.

Metal recovery is about 90% with respect to wire.

SPECIFICATIONS ASME IX OUALIFICATION Supercore 309Mo Supercore 309MoP OW432 F-No 6 AWS A5.22M E309LMoT0-1/4 E309LMoT1-1/4 QW442 A-No 8 EN ISO 17633-A T 23 12 2 L R C/M 3 T 23 12 2 L P C/M 2 EN ISO 17633-B TS309LMo-FB0 TS309LMo-FB1 Approvals DNV DNV. LRS

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN
Min.		0.5				22.0	12.0	2.0		15
Max.	0.04	2.0	1.0	0.025	0.030	25.0	14.0	3.0	0.3	25
Typical	0.03	1.3	0.7	0.01	0.02	23	12.8	2.3	0.1	20

ALL-WELD MECHANICAL PROPERTIES

As welded	Min.	Typical
Tensile strength (MPa)	550	700
0.2% proof strength (MPa)	350	550
Elongation (%) 4d	25	32
5d	25	30
Reduction of area %		40
Impact ISO-V(J) +20°C		50
Hardness (HV)		245

OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO2 or 100% CO2 at 20-25!/min. Proprietary gases may be used but argon should not exceed 85%. Current: DC+ve ranges as below for Ar-20%CO2. Welding with 100%CO2 requires approx 3V higher:

Diameter (mm)	amp-volt range	typical	stickout
1.2	120A-22V to 280A-34V	180A-29V	15-20mm
1.2P	120A-22V to 250A-32V	160A-26V	15-20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume	com	position	ĺwt	%ി

Fe	Mn	Ni	Cr³	Cr⁵	Cu	F	OES (mg/m ³)
11	6	2	8.5	1	<1	11	0.8

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

ULTRAMET 309Nb

PRODUCT DESCRIPTION

MMA electrode with rutile flux system made on high purity 304L stainless steel core wire. Deposits a low carbon 309 type weld metal with a minimum niobium level of 0.7%. Recovery is about 115% with respect to core wire and 65% with respect to the whole electrode.

SPECIFICATIONS

AWS A5.4M BS EN ISO 3581 E309Nb-16 (previously E309Cb-16) E 23 12 Nb R 32

ASME IX QUALIFICATION

QW432 F-No 5

QW442 A-No 8

MATERIALS TO BE WELDED

There are no comparable parent materials; used for overlays only.

APPLICATIONS

Ultramet 309Nb is designed specifically for use where niobium stabilised weld metal is required in overlays, or inlays, on CMn or low alloy steels. A minimum niobium content of 0.7% in undiluted weld metal ensures a fully stabilised deposit of approximately 347 composition is produced in the first layer on mild and medium carbon steels.

It may also be useful for the first run when welding 321 or 347 clad steels, prior to completion with 347 type weld metal. It is not recommended as an alternative to 309L types for dissimilar welded joints.

MICROSTRUCTURE

In the as-welded condition the microstructure consists of austenite with a ferrite content of 8-20FN.

WELDING GUIDELINES

Preheat is dependent on the base material hardenability, eg none on mild steel, up to 200°C on hardenable (0.4%C) steels.

With a typical dilution of 25-30% on a medium carbon steel, Ultramet 309Nb could produce a fully austenitic weld deposit. It is well known that weld metals containing niobium are especially sensitive to hot cracking when little or no ferrite is present. Therefore it is desirable to minimise dilution in the first layer of overlays by controlling parameters and bead overlap (aim for 50% overlap).

If PWHT is applied there will be some weld metal embrittlement, although ductility should remain acceptable after normal times and temperature. However fusion boundary embrittlement can be more severe and acceptability should be established with representative procedure tests.

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Ρ	Cr	Ni	Мо	Nb	Cu
Min.		0.5				22.0	12.0		0.70	
Max.	0.04	2.5	0.9	0.025	0.030	25.0	14.0	0.50	1.00	0.50
Typical	0.03	1.5	0.5	0.01	0.02	23	12.5	0.05	0.8	0.1

ALL-WELD MECHANICAL PROPERTIES

As welded		Typical
Tensile strength (MPa)		660
0.2% proof strength (MPa)		470
Elongation (%)	4d	34
	5d	31
Reduction of area %		52

PARAMETERS, DC +VE OR AC (OCV: 70V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210

PACKAGING DATA

Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	13.8	15.6	15.9	18.0
Pieces/carton	717	441	288	168

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 150 - 200°C/1-2h to restore to as-packed condition. Maximum 250° C, 3 cycles, 10h total.

Storage of redried electrodes at 100-200°C in holding oven or 50-200°C in heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, >18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Ni	Cr	Mo	Cu	F	OES (mg/m ³)
9	6	1	7	<0.5	<0.2	17	0.7

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

LEAN DUPLEX STAINLESS STEELS

ALLOY TYPE

Ferritic-austenitic lean duplex stainless steels.

MATERIALS TO BE WELDED

BS EN & DIN

X2CrNiN23L 1.4362 ASTM/UNS 532304

532304 532101 532001

Proprietary alloys include:

Sandvik Usinor Industeel Avesta Polarit AK Steel SAF 2304 Uranus 35N LDX 2101 Nitronic 19D

APPLICATIONS

Lean duplex stainless steels (LDSS) provide cost savings compared to 22%Cr duplex stainless steels because of the reductions in Ni and Mo. The LDSS also provide a strength advantage compared to austenitic stainless steels and generally have comparable corrosion resistance to austenitic stainless steels.

The LDSS are finding more widespread use in today's economic climate, particularly in structural applications. Uses include: bridges and structural work generally replacing austenitic stainless steels and carbon steels rather than replacing standard duplex alloys.

MICROSTRUCTURE

Multipass welds in the as-welded condition contain about 25–50% ferrite depending on dilution and heat input/cooling rate conditions.

WELDING GUIDELINES

Preheat not generally required. Interpass temperature 150°C max, although for many applications this could be relaxed to 250°C. Heat input in the range 1.0–2.5 kJ/mm (depending on material thickness) should be acceptable. Welds are left in the as-welded condition.

RELATED ALLOY GROUPS

The 22%Cr duplex consumables (data sheet B-60) are related and can also be used for welding the lean duplex stainless steels.

There is no matching solid wire available. The ER329N (AWS ER2209) wire should be used for MIG/ TIG/SAW applications, data sheet B-60.

PRODUCTS AVAILABLE

Process	Product	Specification
MMA	Ultramet 2304	
FCW	Supercore 2304P	

ULTRAMET 2304

RUTILE MMA ELECTRODE FOR LEAN DUPLEX STEELS

PRODUCT DESCRIPTION

MMA electrode made on high quality stainless steel core wire with rutile flux system optimised for all welding positions except vertical down.

Recovery is about 120% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS		ASME IX QU	ALIFICATION
AWS A5.4M	Proposed E2101-16	QW432	F-No
		QW442	A-No

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	PRE _N
min.		0.5				22.5	8.0	0.1		0.10	24
max.	0.04	1.5	0.9	0.02	0.03	25.5	9.5	0.8	0.5	0.20	31
Typical	0.03	0.7	0.7	0.015	0.025	24.5	9.1	0.2	0.3	0.13	27
PRE_ = Cr + 3.3Mo + 16N											

ALL-WELD MECHANICAL PROPERTIES

As welded	Min.	Typical
Tensile strength (MPa)	690	790
0.2% proof strength (MPa)	480	640
Elongation (%) 4d	20	31
Reduction of area (%)		42
Impact ISO-V(J) +20°C		55
- 20°C		50
- 50°C		37

OPERATING PARAMETERS, DC +VE OR AC (OCV 55V MIN)

OF ERATING FARMETERS, DC -			
Diameter (mm)	2.5	3.2	4.0
min. A	50	65	100
max. A	90	120	160
PACKAGING DATA			
Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	450
kg/carton	12	13.5	17.4
Pieces/carton	229	130	86

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life.

Direct use from tin is satisfactory for longer than a working shift of 8h.

Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity. For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 380° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (wt %) typical

Fe	Mn	Cr	Ni	Мо	Cu	F	OES (mg/m ³)
7	б	б	1	0.2	<0.2	16	0.8

STAINLESS STEELS

SUPERCORE 2304P

ALL-POSITIONAL RUTILE FLUX CORED WIRE FOR LEAN DUPLEX STEELS

PRODUCT DESCRIPTION

High performance rutile all positional flux cored wire produced in the most versatile size of 1.2mm.

Made with an austenitic stainless steel sheath and rutile flux system.

Weld metal carbon content is typically <0.04% when using either 80%Ar-20%CO2 or 100% CO2 shielding gas. Metal recovery about 90% with respect to the wire.

SPECIFICATIONS	ASME IX QUALIFICATION
NONE	QW432 F-No
	QW442 A-No

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	PRE
min.		0.5				22.5	8.0	0.1		0.08	24
max.	0.04	2.0	1.00	0.02	0.03	25.5	10.0	0.8	0.75	0.20	31
Typical	0.03	1.0	0.6	0.01	0.02	24.5	9.2	0.2	0.2	0.14	27

PREN (pitting resistance equivalent) = Cr + 3.3Mo + 16N

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		690	760
0.2% proof strength (MPa)		480	610
Elongation (%)	4d	20	35
	5d	20	32
Reduction of area (%)			50
Impact ISO-V(J)	- 20°C		70
	- 50°C		55
Hardness (HV)			240

OPERATING PARAMETERS

Shielding gas: Either 80%Ar-20%CO2 or 100% CO2 shielding gas at 20-251/min. Proprietary gases may be used but argon should not exceed 85%.

Current: DC+ve ranges as below for Ar-20%CO2. Welding with 100%CO2 requires approx 3V higher:

Diameter (mm)	amp-volt range	typical	stickout
1.2 P	120A-22V to 250A-34V	150A-25V	15-20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition (wt %) typical

Fe	Mn	Ni	Cr ³	Cr⁵	Cu	F	OES (mg/m ³)
10	12	2	4	5.5	<0.5	9	0.9

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

22%Cr DUPLEX STAINLESS STEELS

ALLOY TYPE

22%Cr standard ferritic-austenitic duplex stainless steels.

MATERIALS TO BE WELDED

ASTM	UNS
A182 Gr F51	S31803
A890 Gr 4A (cast)	S32205
BS	S32101
318S13	S32304
	S32001
BS EN & DIN	J92205 (cast)
1.4462	

1.4462 X2CrNiMoN22-5-3

Proprietary alloys include:

Sandvik	SAF2205
Avesta Polarit	2205
Creusot Ind	UR 45N
Böhler	A903
VDM	Cronifer 2205LCN
S+C	Maresist F51 (cast)
Sumitomo	SM22Cr

Lean and Mo-free duplex including:

(UNS S32304 / DIN 1.4362 / X2CrNiN23L)						
Sandvik	SAF 2304					
Creusot Ind	UR35N					
LDX 2101	Avesta Polarit					

APPLICATIONS

Duplex stainless steel pipe, plate, fittings and forgings have an approximate 50:50 microstructure of austenite with a ferrite matrix.

This, coupled with general alloying level, confers:

- high strength compared with standard austenitic steels, eg type 316L.

- good general corrosion resistance in a range of environments.

- high resistance to chloride induced stress corrosion cracking (CSCC).

- high resistance to pitting attack in chloride environments, eg seawater.

These alloys are finding widening application in the offshore oil/gas, chemical and petrochemical process industries, eg pipework systems, flowlines, risers, manifolds etc.

MICROSTRUCTURE

Multipass welds in the as-welded condition contain about 25–50% ferrite depending on dilution and heat input/cooling rate conditions.

WELDING GUIDELINES

Preheat not generally required. Interpass temperature 150°C max. Heat input in the range 1.0–2.5 kJ/mm (depending on material thickness) should be acceptable but some codes restrict the max to 1.75 or 2.0kJ/mm.

PWHT

Although welds in wrought duplex stainless steels are almost always left in the as-welded condition, major repairs to castings are generally specified in the solution treated condition. Experience has indicated good properties following 1120°C/3-6h + water quench with or without a cooling step to 1060°C before quenching.

ADDITIONAL INFORMATION

A Technical Profile covering duplex and superduplex stainless steels is available.

RELATED ALLOY GROUPS

Lean duplex (data sheet B-59), superduplex (data sheets B-61, B-62 and B-63) and duplex matching consumables for casting repairs.

PRODUCTS AVAILABLE

Process	Product	Specification
	Supermet 2205	-
MMA	Ultramet 2205	AWS E2209-16
	Supermet 2205AR	AWS E2209-17
	2205XKS	AWS E2209-15
TIG/SAW	ER329N	AWS ER2209
MIG	ER329N	AWS ER2209
MCW	Supercore M2205	AWS EC2209
SAW flux	SSB	BS EN SA AF2 DC
	Supercore 2205	AWS E2209T0-1/4
FCW	Supercore 2205P	AWS E2209T1-1/4

ASME IX OUAL IFICATION

SUPERMET 2205

OVERALLOYED RUTILE ELECTRODE FOR 22%Cr DUPLEX STEELS

PRODUCT DESCRIPTION

MMA electrode with enhanced Cr, Mo and N levels, giving higher weld pitting resistance than the nearest AWS specification A5.4 E2209-16. See **Ultramet 2205** for rutile type conforming to AWS.

Supermet 2205 is made on high quality stainless steel core wire with a rutile flux system designed to give minimum carbon content coupled with optimum operating characteristics.

Supermet 2205 is designed for welding wrought, forged or cast «standard» duplex stainless steels for service in the as-welded condition. Good properties are also obtained when solution treated, as frequently required for casting repairs. The electrode has a rutile flux system and is used primarily for downhand and H-V welding applications. Smaller sizes offer excellent all-positional operability. Recovery is about 120% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

WS A5.4M E2209-16 nearest classification QW432 OW442
NW442
QW442

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	PRE,
Min.		0.5	0.3			24.0	8.5	3.0		0.14	36
Max.	0.03	2.0	1.0	0.02	0.03	26.0	10.0	4.0	0.5	0.25	43
Typical	0.02	1	0.7	0.01	0.02	25	9.5	3.4	0.1	0.17	38
PRE = 0	r + 3.3Mo	+ 16N									

ALL-WELD MECHANICAL PROPERTIES

s welded		Min.	Typical	Pipe butt weld	1120°C/ 3h + WQ
Tensile strength (MPa)		690	850	867	800
0.2% proof strength (MPa)		480	650	752	480
Elongation (%)	4d	20	30	25	32
Reduction of area %			40	35	
Impact ISO*-V(J)	+20°C		60-73		
	- 20°C		45-55	45-50	
	- 30°C		40-52	42-46	> 90
	- 40°C		35-47	38-43	> 70
	- 50°C		30-40	35-40	> 35

OPERATING PARAMETERS, DC +VE OR AC (OCV: 55V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	50	65	100	130
max. A	90	120	160	190
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	12.0	13.2	13.8	18.6
Pieces/carton	630	354	255	165

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 380° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F*	OES (mg/m ³)
7	б	б	1	0.2	<0.2	16	0.8

* F = 28% for basic coated 2205XKS but this does not affect OES. www.metrode.com DS B-60-SUPERME

DS B-60-SUPERMET 2205 | Rev. 01-03/16

ULTRAMET 2205

RUTILE ALL-POSITIONAL MMA ELECTRODE FOR 22%Cr DUPLEX STEELS

PRODUCT DESCRIPTION

MMA electrode made on duplex stainless steel core wire with a rutile flux system designed to give minimum carbon content coupled with optimum operating characteristics. The electrode has a rutile flux system optimised for all welding positions except vertical down and provides excellent operability.

Recovery is about 120% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M	Λ
DC EN ICO	21

BS EN ISO 3581 E 22 9 3 N L R 3 2

WELDING POSITIONS (ISO/ASME)

F2209-16

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	PRE,
Min.		0.5	0.3			22.0	8.5	2.8		0.14	34
Max.	0.03	2.0	0.90	0.02	0.03	23.5	10.0	3.5	0.5	0.2	38
Typical	0.02	1	0.7	0.01	0.02	23.2	9	3.2	0.1	0.17	36

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	typical
Tensile strength (MPa)		690	850
0.2% proof strength (MPa)		480	675
Elongation (%)	4d	20	27
	5d	20	25
Reduction of area %			40
Impact ISO-V(J)	+20°C		> 54 (> 0.8)
	- 20°C		43-48 (> 0.5)
	- 50°C		32-41 (>0.38)
Hardness (HRC)	HV10		< 305 (< 28)

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	190
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	350
kg/carton	12.0	13.5	13.5	13.5
Pieces/carton	654	378	249	174

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 380° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUMF DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Mo	Cu	F *	OES (mg/m ³)
7	6	6	1	0.2	<0.2	16	0.8

* F = 28% for basic coated 2205XKS but this does not affect OES.

STAINLESS STEELS

SUPERMET 2205AR

RUTILE DOWNHAND MMA ELECTRODE FOR 22%Cr DUPLEX STEELS

PRODUCT DESCRIPTION

MMA electrode made on high quality stainless steel core wire with a rutile flux system designed to give minimum carbon content coupled with optimum operating characteristics.

The electrode has a rutile flux system optimised for operability.

Recovery is about 120% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M

BS EN ISO 3581

ASME IX QU	ALIFICATION
QW432	F-No 5
QW442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

F2209-17

E 22 9 3 N L R 3 3

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	PRE
Min.		0.5				21.5	8.5	2.5		0.14	35
Max.	0.04	2.0	1.00	0.025	0.030	23.5	10.5	3.5	0.5	0.2	38
Typical	0.03	0.8	0.7	0.01	0.02	23	9	3.2	0.1	0.17	36

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		690	830
0.2% proof strength (MPa)		450	680
Elongation (%)	4d	20	28
	5d	20	26
Impact ISO-V(J)	+ 20°C		45
	- 20°C		40
	- 50°C		35
Hardness (HRC)	HV10		< 310 (< 28)

OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	190

PACKAGING DATA

Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	450	450
kg/carton	11.4	13.5	18.0	18.6
Pieces/carton	594	363	249	165

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 380° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m ³)
7	б	6	1	0.2	<0.2	16	0.8

* F = 28% for basic coated 2205XKS but this does not affect OES.

2205XKS

BASIC PIPE-WELDING MMA ELECTRODE FOR 22%Cr DUPLEX STEELS

PRODUCT DESCRIPTION

MMA electrode made on duplex stainless core wire with a special basic flux to give optimum all-positional operability. Recovery is about 105% with respect to core wire, 65% with respect to whole electrode.

The electrode has a basic flux system and is recommended where the highest sub-zero toughness is required, and for the most demanding positional welding applications such as fixed pipework in the ASME 6G position.

SPECIFICATIONS

STAINLESS STEELS

AWS A5.4M	E2209-15
BS EN ISO 3581	E 22 9 3 N
Approvals	ABS, DN\

/5 A5.4M	E2209-15
EN ISO 3581	E 22 9 3 N L B 4 2
provals	ABS, DNV, TÜV

ASME IX QUALIFICATION						
QW432	F-No 5					
0W442	A-No 8					

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	PRE
Min.		0.5				22.0	8.5	3.0		0.15	35
Max.	0.04	2.0	0.90	0.02	0.03	23.5	10.0	3.5	0.75	0.20	38
Typical	0.03	1	0.6	0.01	0.02	23	9	3.2	0.1	0.17	36

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical	1120 – 1135°C +WQ
Tensile strength (MPa)		690	750-870	790
0.2% proof strength (MPa)		450	630-700	480
Elongation (%)	4d	20	28	41
	5d	20	26	37
Reduction of area %			45	64
Impact ISO-V(J)	+ 20°C		> 85	
	- 50°C	47	> 60	> 75
	- 75°C		> 30	
Hardness (HV)			260-290	240

TYPICAL OPERATING PARAMETERS, DC +VE ONLY

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	50	70	100	130
max. A	75	95	155	190
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	350
kg/carton	12.0	12.9	13.5	13.5
Pieces/carton	720	402	273	171

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 380° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m ³)
7	6	б	1	0.2	<0.2	16	0.8

* F = 28% for basic coated 2205XKS but this does not affect OES.

ER329N

SOLID WIRES FOR TIG, MIG AND SAW

PRODUCT DESCRIPTION

Solid TIG, MIG and sub-arc wires for welding 2205 type duplex stainless steels.

SPECIFICATIONS				ASME IX QU	ALIFICATION
AWS A5.9M EF	R2209			QW432	F-No 6
BS EN ISO 14343-A 22	93NL			QW442	A-No 8
BS EN ISO 14343-B SS	2209				
Approvals DN	NV. TÜV	For TIG wires			

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	N
Min.		1.0	0.25			22.5	8.0	3.0		0.14
Max.	0.03	2.0	0.65	0.020	0.030	23.5	9.5	3.5	0.3	0.20
Typical	0.015	1.6	0.5	0.001	0.015	23	8.2	3.2	0.1	0.17*

Duplex weld metal microstructure with austenite + 30-50% ferrite.

Pitting resistance equivalent PREN = Cr + 3.3Mo + 16N is > 35.

* ER329N MIG spooled wire is selected for suitability for both MIG and auto-TIG, with typically 0.15%N to control porosity.

ALL-WELD MECHANICAL PROPERTIES

As welded	Min		ТурісаІ					
AS Welueu	ININ	•	TIG	MIG	SAW + SSB			
Tensile strength (MPa)	690)	790	800-835	790			
0.2% proof strength (MPa)	450)	620	560-620	630			
Elongation (%)	4d 20		36	28-35	30			
	5d 20		33	30	27			
Impact ISO-V(J)	- 30°C	180) (> 140)	> 70	75 (>55)			
	- 50°C	180) (> 120)	> 60	55 (>35)			
	- 75°C	12	5 (>70)					
Hardness	HV	270) (< 310)	270 (< 310)	275 (< 320)			
	HRC	23	3 (< 28)	23 (< 28)	23 (< 28)			

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
TIG	Argon	DC-	1.6 / 2.4	100A, 12V
MIG	Ar / He / CO,	pulsed	1.2	180A, 28V
SAW	SSB flux *	DC+	2.4	350A,30V

PACKAGING DATA							
Diameter (mm)	0.8	1.0	1.2	1.6	2.0	2.4	3.2
TIG			2.5 kg tube				
MIG	15kg reel	15kg reel	15kg reel	15kg reel			
SAW				25kg spool	To order	25kg spool	25kg spool

FUME DATA

MIG fume composition (wt %) (TIG and SAW fume negligible)

Fe	Mn	Cr ³	Ni	Мо	Cu	OES (mg/m ³)
28	10	20	8	1.5	< 0.5	2.5

SUPERCORE M2205

METAL CORED WIRE FOR 22%CR DUPLEX STEELS

PRODUCT DESCRIPTION

The wire is made with an austenite stainless steel sheath and high purity metal powders. Metal recovery is about 96% with respect to the wire.

SPECIFICATIONS

AWS A5.22M	EC2209
BS EN ISO 17633-A	T 22 9 3 N L M M12 3
BS EN ISO 17633-B	TS2209-FB0

ASME IX QUALIFICATION							
QW432	QW432 F-No 6						
0W442	A-Nn 8						

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	N	PRE*
Min.		0.5				21.5	7.5	2.5		0.08	34
Max.	0.03	2.0	0.90	0.025	0.030	23.5	9.5	3.5	0.5	0.20	38
Typical	0.02	1.4	0.8	0.010	0.018	22.5	8.5	3.0	0.15	0.15	35

* PRE (pitting resistance equivalent) = Cr + 3.3Mo + 16N

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical Ar-38%He-2%CO
Tensile strength (MPa)		690	820
0.2% proof strength (MPa)		480	680
Elongation (%)	4d	20	30
	5d	20	27
Impact ISO-V(J)	- 20°C		50
	- 50°C		38
Hardness	HV		280

OPERATING PARAMETERS

Shielding gas: Stainshield heavy, Ar-38%-He-2%CO2 shielding gas at 15-20l/min.

Current: DC+ve

Diameter (mm)	amp-volt range	typical	stickout	
1.2	1.2 180A-27V to 250A-32V		10-20mm	

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers. Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

fume composition (wt %)

Fe	Mn	Cr³	Ni	Мо	Cu	OES (mg/m ³)
28	10	20	8	1.5	< 0.5	2.5

STAINLESS STEELS

SUPERCORE 2205, 2205P

FLAT AND ALL-POSITIONAL FLUX CORED WIRES FOR 22%CR DUPLEX STEELS

PRODUCT DESCRIPTION

High performance rutile flux cored wires produced in the most versatile size of 1.2mm.

Supercore 2205 is suited to welding in the flat and horizontal-vertical positions (material > 6mm).

Supercore 2205P is optimised for positional welding, both vertical up and for fixed pipework qualified in the ASME 5G or 6G welding positions (pipe typically > 150mm diameter, > 15mm wall).

Made with an austenitic stainless steel sheath and rutile flux system.

Weld metal carbon content is typically <0.03% when using either 80%Ar-20%CO2 or 100% CO2 shielding gas.

Metal recovery about 90% with respect to the wire.

SPECIFICATIONS			ASME IX QUALIFI		
	Supercore 2205	Supercore 2205P	QW432	F-No 6	
AWS A5.22M	E2209T0-1/4	E2209T1-1/4	QW442	A-No 8	
BS EN ISO 17633-A	T 22 9 3 N L R C/M 3	T 22 9 3 N L P C/M 2			
BS EN ISO 17633-B	TS2209-FB0	TS2209-FB1			
Approvals		LRS			

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	PRE*
Min.		0.5				21.5	8.5	2.8		0.08	34
Max.	0.04	2.0	1.00	0.02	0.030	24.0	10.0	4.0	0.3	0.20	38
Typical	0.03	1.2	0.7	< 0.01	0.02	23	9.2	3.1	0.1	0.12	35
* PRF (n	* PRF (nitting resistance equivalent) = Cr + 3 3Mo + 16N										

* PRE (pitting resistance equivalent) = Cr + 3.3Mo + 16N

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Supercore 2205P typical	Supercore 2205 typical
Tensile strength (MPa)		690	800	800
0.2% proof strength (MPa)		480	630	610
Elongation (%)	4d	20	32	30
	5d	20	29	26
Reduction of area (%)			45	36
Impact ISO-V(J)	- 20°C		65	50
	- 50°C		45	40
	- 75°C		30	=
Hardness (HV)			270	270

OPERATING PARAMETERS

Shielding gas: Either 80%Ar-20%CO2 or 100% CO2 shielding gas at 20-25I/min. Proprietary gases may be used but argon should not exceed 85%. Gas mixtures without oxygen additions can be helpful for optimum weld metal toughness. Fillet weld penetration and profile will be related to the skill level of the operator.

Current: DC+ve ranges as below for Ar-20%C02. Welding with 100%C02 requires approx 3V higher:						
Diameter (mm)	amp-volt range	typical	stickout			
1.2	150A-25V to 280A-34V	200A-30V	15-20mm			
1.6	200A-28V to 330A-34V	230A-30V	15-25mm			
1.2 P	120A-22V to 250A-34V	150A-25V	15-20mm			

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition, wt %

Fe	Mn	Ni	Cr³	Cr	Cu	F	OES (mg/m ³)
11	6	1	9	1.5	0.1	12	0.9

SSB FLUX

SUB-ARC FLUX

PRODUCT DESCRIPTION

Agglomerated basic non-alloying flux for submerged arc welding.

Ś
ш
ш
E.
S
S
ŝ
щ
=
4
.≪

SPECIFICATIONS	
DIN 32522	BFB6 63353 DC8M
BS EN ISO 14174	SA AF2 DC

ASME IX QUALIFICATION					
QW432	F-No				
QW442	A-No				

COMPOSITION (TYPICAL)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν
ER329N wire	0.015	1.6	0.5	0.001	0.015	23	8.5	3.2	0.1	0.17
deposit	0.02	1.3	0.5			22.5	8.5	3.1	0.1	0.15

ALL-WELD MECHANICAL PROPERTIES

As welded			
Tensile strength (MPa)		790	
0.2% proof strength (MPa)		630	
Elongation (%)	4d	30	
Impact ISO-V(J)	- 30°C	75 (>55)	
	- 50°C	55 (>35)	
Hardness	HV	275 (< 320)	
	HRC	23 (< 28)	

OPERATING PARAMETERS

Current: DC +ve ranges as below:

Diameter (mm)	amp-volt range	typical	stickout
1.6	200-350A, 27-31V	300A, 28V	20-25mm
2.4	250-450A, 28-32V	350A, 29V	20-25mm

PACKAGING DATA

Metrode SSB Flux is supplied in sealed moisture resistant 20kg metal drums.

Preferred storage conditions for opened drums: < 60%RH, > 18°C.

If the flux has become damp or has been stored for a long period, it should be redried in the range 250-400°C/1-3h.

METRODE PRODUCTS I TO HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

25%Cr SUPERDUPLEX STEELS - ZERON[®] 100

ALLOY TYPE

25%Cr ferritic-austenitic superduplex stainless steels matching the proprietary Zeron[®] 100 alloy.

MATERIALS TO BE WELDED

MATCHING

wrought	cast
UNS S32760	UNS J93380, DIN 1.4508
DIN 1.4501	ASTM A890 6A,
ASTM A182 F55	ACI CD3MWCuN
OTHER SUPERDUPLEX,	INCLUDING
wrought	
UNS S32750	UNS S32550
UR47N (CLI)	UR52N+ (CLI)
532520	LINS 539274

532050

UR47N (CLIJ	UR52N+ (
S32520	UNS 5392
Ferralium SD40 (Meighs)	UNS S329
DP3W (Sumitomo)	
7-Mo Plus (Carpenter)	
2507 (Sandvik/Avesta)	
cast	
UNS J93404	DIN 1.4469
ASTM A890 5A	ACI CE3MN

APPLICATIONS

Zeron[®] 100 has an exceptional combination of strength and resistance to corrosion and erosion in a wide range of aggressive media. The presence of Cu+W provides superior resistance to sulphuric and hydrochloric acids when compared to similar alloys without these additions. Offshore applications exploit the high resistance to pitting and stress-corrosion cracking in seawater. It is also highly resistant to caustic alkalis and phosphoric acid. Service temperature range is usually limited to -50°C to 280°C, the upper limit owing to thermal instability ("450°C" and sigma embrittlement).

It is widely used in oil and gas production and process pipework, risers, manifolds, pressure vessels, valves, pumps, desalination plant, systems for flue-gas desulphurisation (FGD) and also in the mining, chemical and pharmaceutical industries. Zeron® 100 wires are also used for joining supermartensitic stainless steels.

MICROSTRUCTURE

Multipass welds in the as-welded or solution annealed condition consist of an austenite-ferrite duplex microstructure with an approximate 30-60% ferrite level, depending on heat input/cooling conditions

WELDING GUIDELINES

Preheat not generally required. Interpass temperature 150°C max. Heat input in the range 1.0-2.0 kJ/mm (depending on material thickness) should be acceptable but most codes restrict the max to 15 or 175kl/mm

PWHT

Although welds in wrought duplex stainless steels are almost always left in the as-welded condition. major repairs to castings are generally specified in the solution treated condition. Experience has indicated good properties following 1120°C/3-6h + water quench.

ADDITIONAL INFORMATION

Further information on the welding of Zeron® 100 is available in the Metrode Technical Profile on duplex and superduplex.

RELATED ALLOY GROUPS

2507 superduplex (data sheet B-62) and matching consumables for casting repair (solution annealed) applications.

PRODUCTS AVAILABLE

Process	Product	Specification
MMA	Zeron® 100XKS	BS EN E25 9 4 N L B
TIG/MIG/ SAW	Zeron® 100X	BS EN 25 9 4 N L
SAW flux	SSB	BS EN SA AF 2
FCW	Supercore Z100XP	AWS E2594T1-4

ZERON® 100XKS

BASIC PIPE-WELDING MMA ELECTRODE FOR SUPERDUPLEX STEELS

PRODUCT DESCRIPTION

Basic coated all-positional MMA electrode for welding Zeron[®] 100 and other superduplex alloys for service in the as-welded condition. This electrode is overmatching with respect to nickel content to achieve correct austenite-ferrite microstructural phase balance. It is designed for the most demanding vertical and overhead welding positions such as fixed pipework qualified in the ASME 6G position.

Fully alloyed matching Zeron[®] 100 core wire including W and Cu. Moisture resistant flux technology. Recovery is about 105% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

STAINLESS STEELS

AWS A5.4M	E2595-15
BS EN ISO 3581	E 25 9 4 N L
Weir Materials	MDS 12809
Approvals	ABS, DNV

ASME IX QU	IALIFICATION
QW432	F-No 5
0W442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	W	Cu	Ν	PRE,	PRE
min.						24.0	9.0	3.5	0.5	0.5	0.2	40	40
max.	0.03	1.0	1.0	0.01	0.03	26.0	10.0	4.0	1.0	1.0	0.3		
Typical	0.025	0.9	0.5	0.005	0.02	25	9.3	3.6	0.7	0.7	0.23	41	42

Pitting resistance equivalent PREN = Cr + 3.3Mo + 16N

Pitting resistance equivalent PREW = Cr + 3.3Mo + 1.65W + 16N

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	Typical
Tensile strength (MPa)		760	800-950
0.2% proof strength (MPa)		550	650-750
Elongation (%)	4d	15	30
	5d	20	22-27
Reduction of area %			40-45
Impact ISO-V(J)	- 20°C		> 55
	- 50°C		> 40
Hardness (HV)			270-320

OPERATING PARAMETERS. DC +VE

of Elociting Parotice i	LING, DC VE			
Diameter (mm)	2.5	3.2	4.0	5.0
min. A	50	70	100	130
max. A	75	95	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	350
kg/carton	12.0	14.1	13.5	13.5
Pieces/carton	696	360	270	168

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical:

Fe	Mn	Ni	Cr	Cu	Мо	V	F	OES (mg/m ³)
7	б	1	7	0.5	0.2	<0.1	28	0.7

ZERON[®] 100X

SOLID WELDING WIRE FOR SUPERDUPLEX STEELS

PRODUCT DESCRIPTION

Solid wire for TIG, MIG and sub-arc welding.

For applications where Zeron[®] 100X wire is to be used for welding supermartensitic stainless steels it is possible for wire to be supplied with a total hydrogen content of 3ppm maximum.

SPECIFICATIONS		ASME IX QU	ALIFICATION
AWS A5.9M	ER2594	QW432	F-No 6
BS EN ISO 14343-A	25 9 4 N L (prefix W=TIG, G=MIG, S=SAW)	QW442	A-No 8
Weir Materials	MDS 12809/07		
Approvals	ABS, TÜV, DNV (TIG and SAW in conjunction with SSB flux)		

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	w	Cu	Ν	PRE	PRE
Min.						24.0	9.0	3.5	0.5	0.5	0.2	40 "	40
Max.	0.03	1.0	1.0	0.01	0.03	26.0	10.0	4.0	1.0	1.0	0.3		
Typical	0.015	0.7	0.4	0.002	0.02	25	9.3	3.7	0.6	0.7	0.23	41	42

ALL-WELD MECHANICAL PROPERTIES

Typical values as welded		Min.	TIG	MIG	SAW	TIG at 160°C
Tensile strength (MPa)		760	870	860	885	769
0.2% proof strength (MPa)		550	695	645	700	523
Elongation (%)	4d	15	36	25	26	39
	5d	20	32	23	24	34
Reduction of area (%)			68	28	48	72
Impact ISO-V(J)	-50°C		130	60	40	
	-75°C		>100			
Hardness cap/mid	(HV)		290	290	290	

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
TIG	Argon	DC-	1.6 / 2.4	100A, 12V
MIG	Ar / He / CO	pulsed	1.2	180A, 28V
SAW	SSB flux	DC+	1.6	350A,30V

PACKAGING DATA

Diameter (mm)	0.8	1.0	1.2	1.6	2.0	2.4	3.2
TIG				2.5 kg tube	2.5 kg tube	2.5 kg tube	2.5 kg tube
MIG	To order	To order	To order	To order			
SAW				25kg spool		25kg spool	

FUME DATA

Fume composition, w	: %	typical:
---------------------	-----	----------

Fe	Mn	Ni	Cr	Cu	Мо	V	F	OES (mg/m ³)
7	б	1	7	0.5	0.2	<0.1	28	0.7

SSB FLUX

SUB-ARC FLUX

PRODUCT DESCRIPTION

Agglomerated basic non-alloying flux for submerged arc welding.

SPECIFICATIONS		ASME IX Q	UALIFICATION
BS EN ISO 14174	SA AF2 DC	QW432 0W442	F-No A-No
		QW442	A-N0

COMPOSITION (TYPICAL)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	w	Ν
Zeron® 100X wire	0.015	0.7	0.4	0.002	0.023	25	9.3	3.7	0.7	0.7	0.23
Deposit	0.02	0.6	0.4	0.002	0.02	24.5	9.3	3.6	0.7	0.7	0.21

ALL-WELD MECHANICAL PROPERTIES WITHZERON® 100X WIRE

Typical values as welded		min	SAW
Tensile strength (MPa)		750	890
0.2% proof strength (MPa)		550	700
Elongation (%)	4d		25
	5d	20	24
Reduction of area (%)			>40
Impact ISO-V(J)	- 50°C		40
Hardness (HV)			290

OPERATING PARAMETERS

Current: DC +ve ranges as be	low:		
Diameter (mm)	amp-volt range	typical	stickout
1.6	200-350A, 27-31V	300A, 28V	20-25mm
2.4	250-450A, 28-32V	350A, 29V	20-25mm

PACKAGING DATA

Metrode SSB Flux is supplied in sealed moisture resistant 20kg metal drums.

Preferred storage conditions for opened drums: < 60%RH, > 18°C.

If the flux has become damp or has been stored for a long period, it should be redried in the range 250-400°C/1-3h.

STAINLESS STEELS

SUPERCORE Z100XP

RUTILE ALL-POSITIONAL FLUX CORED WIRE FOR SUPERDUPLEX STEELS

PRODUCT DESCRIPTION

Flux cored wire made with an alloyed stainless steel sheath and rutile flux system.

Supercore Z100XP combines easy operability, high deposit quality for both positional pipework and downhand welding. Metal recovery is about 90% with respect to the wire.

CIFICATIONS		ASME IX QUALIFI
AWS A5.22M	E2594T1-4	QW432 F-N
EN ISO 17633-B	TS 2594-F M21 1	QW442 A-No

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	W	Ν	PRE	PRE
Min.		0.5				24.0	8.5	3.5	0.5	0.5	0.2	40	40
Max.	0.04	1.5	1.0	0.02	0.03	26.0	10.0	4.0	1.0	1.0	0.3		
Typical	0.03	1.0	0.5	0.005	0.02	24.5	9.1	3.7	0.6	0.6	0.22	41	42

Pitting resistance equivalent PREN = Cr + 3.3Mo + 16N

Pitting resistance equivalent PREW = Cr + 3.3Mo + 1.65W + 16N

ALL-WELD MECHANICAL PROPERTIES

Typical values		Min.	T ypical
Tensile strength (MPa)		760	880
0.2% proof strength (MPa)		550	690
Elongation (%)	4d	15	27
	5d	18	25
Reduction of area (%)			33
Impact ISO-V(J)	-20°C		40
	-50°C		32
Hardness	HV		280
	HRC		26

TYPICAL OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO2 at 20-251/min. Proprietary gases may be used but argon should not exceed 85%. Current: DC+ve ranges as below for Ar-20%CO_:

Diameter (mm)	range	typical	stickout
1.2	120 – 250A, 22 – 34V	180A, 29V	15 – 20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers. Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition, wt %

Fe	Mn	Ni	Cr ³	Cr⁵	Cu	F	OES (mg/m ³)
14	4	1	11	3	<1	10	1.0

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

25%Cr SUPERDUPLEX STEELS - 2507

ALLOY TYPE

25%Cr ferritic-austenitic superduplex stainless steels.

MATERIALS TO BE WELDED

25%Cr superduplex:

UNS S32750, S32760 * ASTM A182 F53, F55 BS EN 10088-2 X2CrNiMoN25-7-4 (1.4410) SAF 2507 (Sandvik/Avesta) Uranus 47N (CLI)

Castings:

UNS J93404 ASTM A890 Gr5A, 6A * ACI CE3MN

* Zeron® 100 (see DS: B-61)

APPLICATIONS

Superduplex stainless steel pipe, plate, fittings and forgings have an approximate 50:50 microstructure of austenite with a ferrite matrix. This, coupled with general alloying level confers:

- high strength compared with standard austenitic steels eg. type 316L.
- good general corrosion resistance in a range of environments.
- high resistance to chloride induced stress corrosion cracking (CSCC).
- high resistance to pitting attack in chloride environments eg. seawater.

These alloys are finding widening application in the offshore oil/gas, chemical and petrochemical process industries, eg. pipework systems, flowlines, risers, manifolds etc.

MICROSTRUCTURE

Multipass welds in the as-welded or solution annealed condition consist of an austenite-ferrite duplex stainless steel microstructure with an approximate 30-60% ferrite level, depending on heat input/cooling conditions.

WELDING GUIDELINES

Preheat not generally required. Interpass temperature 150°C max. Heat input in the range 1.0–2.0 kJ/mm (depending on material thickness) should be acceptable but most codes restrict the max to 1.5 or 1.75kJ/mm.

PWHT

Although welds in wrought duplex stainless steels are almost always left in the as-welded condition, major repairs to castings are generally specified in the solution treated condition. Experience has indicated good properties following 1120°C/3-6h + water quench.

ADDITIONAL INFORMATION

Further information on the welding of 2507 superduplex is available in the Metrode Technical Profile on duplex and superduplex.

RELATED ALLOY GROUPS

Zeron[®] 100 superduplex (data sheet B-61) and matching consumables for casting repair (solution annealed) applications.

PRODUCTS AVAILABLE

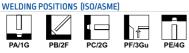
Process	Product	Specification		
MMA	2507XKS	AWS 2594-15		
	Ultramet 2507	AWS 2594-16		
TIG	2507	AWS ER2594		
FCW	Supercore 2507	AWS E2594T0-4		
	Supercore 2507P	AWS E2594T1-4		

2507XKS

BASIC PIPE-WELDING MMA ELECTRODE FOR SUPERDUPLEX STEELS

PRODUCT DESCRIPTION

Basic coated all-positional MMA electrode for welding superduplex alloys for service in the as-welded condition. This electrode is overmatching with respect to nickel content to achieve correct austenite-ferrite microstructural phase balance. It is designed for the most demanding vertical and overhead welding positions such as fixed pipework qualified in the ASME 5G/6G position, and for applications requiring the highest toughness.


Recovery is about 105% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M

BS EN ISO 3581

PA/1G

F2594-15

E 25 9 4 N L B 4 2

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	N	PRE
min.		0.5				24.0	8.5	3.5		0.20	40
max.	0.04	2.0	1.0	0.02	0.03	26.0	10.5	4.5	0.5	0.30	46
Typical	0.03	1	0.5	0.01	0.02	25	9.5	3.8	0.1	0.22	41

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	typical	>1120°C/>3h + WQ transverse *
Tensile strength (MPa)		800	870	>760
0.2% proof strength (MPa)		550	700	
Elongation (%)	4d	22	28	
	5d	18	25	
Reduction of area %			45	
Impact ISO-V(J)	+20°C		85	
	-50°C		60	>80
	-75°C		35	
Hardness (HV)			280-330	<300

Representative properties for solution treated welds in castings of ASTM A890 grade 5A. Ferrite >30%.

OPERATING PARAMETERS, DC +VE

Diameter (mm)	2.5	3.2	4.0	5.0
min. A	50	70	100	130
max. A	75	95	155	190
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	350
kg/carton	12.0	13.5	13.5	13.5
Pieces/carton	669	420	267	165

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life.

Direct use from tin is satisfactory for longer than a working shift of 8h.

Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition wt % typical

Fe	Mn	Ni	Cr	Cu	Мо	V	F*	OES (mg/m ³)
7	6	1	7	0.5	0.2	<0.1	16	0.7

* F = 28% for basic coated 2507XKS electrode but this does not affect the OES.

ASME IX QUALIFICATION

F-No 5

A-No--

OW432

0W442

ULTRAMET 2507

RUTILE ALL-POSITIONAL MMA ELECTRODE FOR SUPERDUPLEX STEELS

PRODUCT DESCRIPTION

Rutile coated MMA electrode for welding superduplex alloys for service in the as-welded condition. This electrode is overmatching with respect to nickel content to achieve the correct austenite-ferrite microstructural phase balance. Recovery is about 105% with respect to core wire, 65% with respect to whole electrode.

SPECIFICAT AWS A5.4		E2594-16							ASME IX Q OW432	UALIFICA F-No 5		
BS EN ISO	3581	E 25 9 4 N L F	32						QW442	A-No		
		(ISO/ASME)										
PA/1G	PB/2F	I C)† PF/3Gu	PE/4G								
CHEMICAL	COMPOSIT	ION (WELD N	IETAL W	T %)								
	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	PRE.	
Min.		0.5				24.0	8.5	3.5		0.20	40	
Max.	0.04	1.5	1.0	0.02	0.03	26.0	10.5	4.5	0.5	0.30	46	
Typical	0.03	1	0.8	0.01	0.02	25	9.5	4	0.1	0.23	42	
ALL-WELD	MECHANI	CAL PROPERT	TIES									
As welded					Min.				Typical			
Tensile strength (MPa)						750			89	0		
0.2% proof strength (MPa)					1	550			750	כ		
Elongation (%) 4d					22			26				
			5d			20			24			
	Reducti	on of area (%	1						35			
		npact ISO-V(J							28			
			-50°C						>7			
		Hardness							275-3			
		nurunes.							275-			
			HKL						28			
OPERATING	G PARAME	TERS, DC +VE	OR AC (O	CV: 55V MIN]							
Dia	ameter (mm		2.5			3.	2			4.0		
	min.	Α	60			7	5			100		
max. A 90				120			155					
PACKAGINO	G DATA											
	ameter (mr	-	2.5				.2			4.0		
l	Length (mn		300				50			350		
	kg/carto		11.4			13				13.8		
	incoc/carte	es/carton 609				393			249			

Direct use from tin is satisfactory for longer than a working shift of 8h.

Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition, wt % typical:

Fe	Mn	Ni	Cr	Cu	Мо	V	F*	OES (mg/m ³)
7	6	1	7	0.5	0.2	<0.1	16	0.7

* F = 28% for basic coated 2507XKS electrode but this does not affect the OES.

SOLID WELDING WIRE FOR SUPERDUPLEX STEELS

PRODUCT DESCRIPTION

Solid wire for TIG

AWS A5.9M ER2594 QW432 F-No 6 BS EN ISO 14343-A W 25 9 4 N L QW442 A-No	SPECIFICATIONS		ASME IX QUALIFICATION			
BS EN ISO 14343-A W 25 9 4 N L QW442 A-No	AWS A5.9M	ER2594	QW432	F-No 6		
	BS EN ISO 14343-A	W 25 9 4 N L	QW442	A-No		
	BS EN 150 14343-A	W 25 9 4 N L	QW442	A-N0		

COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	W	Cu	Ν	PRE
Min.						24.0	8.0	3.0			0.20	40
Max.	0.03	2.5	1.0	0.02	0.03	27.0	10.5	4.5	0.5	0.5	0.30	
Typical	0.02	0.8	0.4	0.005	0.02	25	9.3	3.9	0.05	0.05	0.25	42

ALL-WELD MECHANICAL PROPERTIES WITHZERON® 100X WIRE

Min.	TIG
760	870
550	695
15	36
20	32
	68
	130
	300
	760 550 15 20

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
TIG	Argon	DC-	1.6 / 2.4	100A, 12V

PACKAGING DATA

Diameter (mm)	1.6	2.0	2.4
TIG	2.5 kg tube	2.5 kg tube	2.5 kg tube

FUME DATA

MIG fume composition (wt %) (TIG fume negligible)										
Fe	Mn	Cr³	Ni	Мо	Cu	OES (mg/m ³)				
28	10	22	8	2	1.3	2.3				

203

SUPERCORE 2507, 2507P

RUTILE FLUX CORED WIRES FOR SUPERDUPLEX STEELS

PRODUCT DESCRIPTION

Flux cored wire made with an alloyed stainless steel sheath and rutile flux system. The **Supercore 2507** combines easy operability, high deposit quality and exceptional bead appearance for downhand and HV welding. **Supercore 2507P** combines easy operability, high deposit quality for both positional pipework and downhand welding. Metal recovery is about 90% with respect to the wire.

SPECIFICATIONS

	Supercore 2507	Supercore 2507P
AWS A5.22M	E2594T0-4	E2594T1-4
BS EN ISO 17633-A	T 25 9 4 N L R M21 3	T 25 9 4 N L P M21 2

ASME IX Q	UALIFICATION
QW432	F-No 6

QW442 A-No --

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	w	Ν	PRE
Min.		0.5				24.0	8.5	3.5			0.20	40
Max.	0.04	2.0	1.0	0.02	0.03	26.0	10.5	4.5	0.5	0.5	0.30	
Typical	0.03	1.0	0.5	0.010	0.02	24.5	9.3	3.8	0.05	0.05	0.23	41

Pitting resistance equivalent PREN = Cr + 3.3Mo + 16N

ALL-WELD MECHANICAL PROPERTIES

As welded		Min.	T ypical
Tensile strength (MPa)		760	870
0.2% proof strength (MPa)		550	660
Elongation (%)	4d	15	30
	5d	18	29
Reduction of area (%)			38
Impact ISO-V(J)	+20°C		60
	-20°C		45
	-50°C		35
Hardness (HV)			300

TYPICAL OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO₂ at 20-251/min. Proprietary gases may be used but argon should not exceed 85%. Current: DC+ve ranges as below for Ar-20%CO₂:

Diameter (mm)	range	typical	stickout
1.2	120 – 280A, 22 – 34V	180A, 29V	15 – 20mm
1.2P	120 – 250A, 22 – 32V	150A, 25V	15 – 20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume compositi	ion, wt %						
Fe	Mn	Ni	Cr ^a	Cr⁵	Cu	F	OES (mg/m ³)
11	б	1	9	2	<1	12	1.0

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

25%Cr SUPERDUPLEX STEELS WITH 2%Cu

ALLOY TYPE

25%Cr ferritic-austenitic superduplex stainless steels with nominally 25%Cr-8%Ni-3.5%Mo-1.5%Cu-0.2%N.

MATERIALS TO BE WELDED

ASTM

A240 UNS S32550 (wrought). A351 & A744 grade CD4MCu. A890 grade 1A/UNS J93370. A890 grade 1B/UNS J93372.

DIN

1.4515 (G-X3CrNiMoCuN 26 6 3). 1.4517 (G-X3CrNiMoCuN 26 6 3 3).

BS

3100 grade 332C13. 3146 grade ANC21.

Proprietary

Ferralium 255 and SD40 (Meighs). Uranus 50M, 55, 52N, 52N+ (CLI). Ferrinox 255 (Advanced Metals).

APPLICATIONS

These consumables are designed to match similar alloys, usually supplied as castings. The addition of copper improves corrosion resistance in sulphuric acid media and potentially increases strength and wear resistance, but as-welded toughness and pitting performance in chloride media are reduced in comparison to alloys with <1%Cu. Although the composition is controlled to ensure a minimum Pitting Resistance Equivalent (PRE) of 40 to match the superduplex alloys and maximise resistance to pitting consumables with <1%Cu may be preferred for non-sulphuric acid media unless PWHT is applied (see later).

Applications include pumps and valves, corrosion/ wear resisting parts, and process equipment for use in offshore oil and gas industries, pulp, paper and textile industries, and chemical and petrochemical plant.

MICROSTRUCTURE

In the as-welded, or solution annealed condition, the microstructure is an austenite-ferrite duplex with about 25-60% ferrite.

WELDING GUIDELINES

For general fabrication welds no preheat is generally required and interpass is kept below 150°C. For castings and other highly restrained welds a preheat-interpass range of 100-225°C is helpful in avoiding any risk of hydrogen cracking.

PWHT

The consumables are designed to be predominantly used in the solution annealed condition. Castings will invariably require solution annealing and both electrode and flux cored wire provide higher toughness and somewhat lower strength after solution annealing. The G48A performance is also better following solution annealing. Typical PWHT is carried out at 1120°C for about 2-3 hours and then water quenched.

RELATED ALLOY GROUPS

Solid filler wire to match these alloys (AWS ER2553) has only 6%Ni, so welds usually have excess ferrite. The best alternative is Zeron® 100X with 0.7%Cu (DS B-61). Copper-free 2507 electrodes are also available (DS B-62).

Process	Product	Specification
MMA	Supermet 2506Cu	AWS E2553-16
FCW	Supercore 2507Cu	(AWS E2553T0-4)
FCW	Supercore 2507CuP	(AWS E2553T1-4)

SUPERMET 2506Cu

RUTILE MMA ELECTRODE FOR COPPER BEARING SUPERDUPLEX STEELS

PRODUCT DESCRIPTION

MMA electrode made on a low carbon stainless steel core wire with a rutile flux containing additional elements for alloying and deoxidation. Nitrogen and nickel are controlled to give a balanced duplex structure to minimise the risk of cracking, particularly in highly restrained welds.

Recovery is about 140% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

PA/1G

STAINLESS STEELS

AWS A5.4M E2553-16 BS EN ISO 3581 E 25 9 3 Cu N L R 5 2

ASME IX OUALIFICATION QW432 F-No5 0W442 A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	N	PRE *
min.		0.5				24.0	7.5	2.9	1.5	0.18	40
max.	0.04	1.5	1.0	0.025	0.030	27.0	8.5	3.9	2.5	0.25	
Typical	0.03	1	0.4	0.01	0.02	25.5	8	3.5	1.7	0.22	41
* DDC (D:+	ting Docis	tanco Fauli	(alont) = 0/	Cr. 1 2 20/ M	0 1 1 C 0 / N						

PRE (Pitting Resistance Equivalent) = %Cr + 3.3%Mo + 16%N

ALL-WELD MECHANICAL PROPERTIES

Typical ac wolded and DW/UT	1120°C/	2h + WQ	As-welded		
Typical as-welded and PWHT	Min. *	Typical	Min.	Typical	
Tensile strength (MPa)	690	775	760	925	
0.2% proof strength (MPa)	485	575	550	780	
Elongation (%) 4d	16	32	15	17	
5d			15	16	
Reduction of area (%)		40		25	
Impact ISO-V(J) +20°C		70		35	
- 30°C		60		22	
Hardness HV		260		340	
HRC				30	

* These properties are appropriate for ASTM CD4MCu castings solution treated for optimum corrosion resistance; rapid cooling is important for best impact properties.

OPERATING PARAME	ETERS, DC +VE OR AC (OCV:	70V MIN]		
Diameter (mm)	2.5	3.2	4.0	5.0
min. A	60	75	100	130
max. A	90	120	155	210
PACKAGING DATA				
Diameter (mm)	2.5	3.2	4.0	5.0
Length (mm)	300	350	350	450
kg/carton	12.0	15.0	14.1	16.5
Pieces/carton	513	321	219	111

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 250°C/1-2h to restore to as-packed condition. Maximum 300° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition wt % typical

Fe	Mn	Ni	Cr	Cu	Мо	V	F	OES (mg/m ³)
9	5	1	7.5	1	0.6	<0.1	16	0.6

SUPERCORE 2507Cu, 2507CuP

RUTILE FLUX CORED WIRES FOR CU CONTAINING SUPERDUPLEX STEELS

PRODUCT DESCRIPTION

Flux cored wire made with an alloyed stainless steel sheath and rutile flux system. Supercore 2507Cu combines easy operability, high deposit quality and exceptional bead appearance for downhand and HV welding (material >6mm). Supercore 2507CuP is optimised for positional welding, both vertical up and for fixed pipework qualified in the ASME 5G or 6G welding positions (pipe typically >150mm diameter, >15mm wall).

Made with an austenitic stainless steel sheath and rutile flux system. Weld metal carbon content is typically <0.03% when using either 80%Ar-20%CO2 or 100% CO2 shielding gas.

Metal recovery about 90% with respect to the wire.

SPECIFICATIONS

	C	C		ASME IX QUA	LIFICATION
	Supercore 2507Cu	Supercore 2507CuP		0W432	F-No 6
AWS A5.22M	E2553T0-4	E2553T1-4	Nearest classification	L	
	2233310			QW442	A-No 8
BS EN ISO 17633-A	T 25 9 4 Cu N L R C/M 3	T 25 9 4 Cu N L P C/M 2			
BS EN ISO 17633-B	TS2553-FB0	TS2553-FB1	Nearest classification		
55 EI 156 17655 B	152555 1 80	152555 1 81			

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Ν	PRE
min.						24.0	8.5	3.2	1.0	0.2	40
max.	0.04	1.5	1.0	0.02	0.03	26.0	10.5	4.2	2.0	0.3	
Typical	0.03	0.8	0.5	0.005	0.02	24.5	9.3	3.7	1.4	0.25	41
Pitting resistance equivalent PRF = Cr + 3.3Mo + 16N											

Pitting resistance equivalent PRE_N = Lr + 3.3MO -

ALL-WELD MECHANICAL PROPERTIES

The last standard and DM/UT		1120°C/2h + WQ	As-welded			
Typical as welded and PWHT		typical	Min.	Typical		
Tensile strength (MPa)		760	750	780		
0.2% proof strength (MPa)		450	550	590		
Elongation (%)	4d	40		35		
	5d	39	20	33		
Reduction of area (%)				32		
Impact ISO-V(J)	- 20°C	65		40		
	- 50°C	45		>27		
Hardness (HV)		250		300		

OPERATING PARAMETERS

Shielding gas: 80%Ar-20%CO₂ at 20-25I/min. Proprietary gases may be used but argon should not exceed 85%.

Current: DC+ve ranges as below for Ar-20%CO₂:

Diameter (mm)	amp-volt range	typical	stickout
1.2	140 – 280A, 22 – 35V	180A, 28V	15 – 20mm
1.2P	120 – 250A, 20 – 32V	180A, 26V	15 – 20mm

PACKAGING DATA

Spools vacuum-sealed in barrier foil with cardboard carton: 15kg

The as-packed shelf life is virtually indefinite.

Resistance to moisture absorption is high, but to maintain the high integrity of the wire surface and prevent any possibility of porosity, it is advised that part-used spools are returned to polythene wrappers.

Where possible, preferred storage conditions are 60% RH max, 18°C min.

FUME DATA

Fume composition (wt %)

Fe	Mn	Ni	Cr ³	Cr ³ Cr ⁶	Cu	F	0ES (mg/m3)
14	10	1.5	5	5	1	5	1.0

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

NUCLEAR 308L CONSUMABLES

ALLOY TYPE

308L austenitic stainless steels conforming to RCC-M for joining 304L base materials used in nuclear applications.

MATERIALS TO BE WELDED

ASTM	BS EN & DIN
304L	1.4306
304	1.4301
304LN	1.4311
CF3	1.4308
CF8	

UNS

S 30403 S 30400 S 30453

APPLICATIONS

Used to weld 304L (18/8) stainless steels for applications in the nuclear industry requiring conformance to the RCC-M code.

Standard 308L consumables for general purpose fabrication can be found in data sheet B-30. 308H consumables for elevated temperature service can be found in data sheets C-10 and C-12. Controlled ferrite 308L consumables for cryogenic applications can be found in data sheet B-37.

MICROSTRUCTURE

Austenite with a controlled level of ferrite, 5-15FN.

WELDING GUIDELINES

No preheat, maximum interpass temperature 250°C; no PWHT required.

ADDITIONAL INFORMATION

Requirements are taken from the relevant consumable data sheets in the French RCC-M code.

For consumable qualification data sheets (B-93 and B-94) in accordance with RCC-M S 5142 please contact Metrode Technical Department.

RELATED ALLOY GROUPS

See data sheet B-81 and B-83 for related 316L and 309L consumables conforming to the RCC-M requirements.

Process	Product	Specification		
	Ultramet 308L(N)	AWS E308L-16 RCC-M S 2920		
MMA	Ultramet B308L(N)	AWS E308L-15 RCC-M S 2920		
TIG	308592(N)	AWS ER308L RCC-M S 2910		

ULTRAMET 308L(N)

RUTILE MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode - special rutile flux coated 308L electrode on high purity 304L core wire.

Versatile downhand and positional capability, **Ultramet 308L[N]** has a controlled composition and ferrite content designed to meet the requirements of the RCC-M data sheet S 2920.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M	E308L-16
BS EN ISO 3581	E 19 9 L R 3 2
RCC-M	S 2920

ASME IX QU	ALIFICATION
QW432	F-No 5
QW442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Co	Ν	FN *
Min.		0.5				18.00	9.00					5
Max.	0.035	2.0	0.90	0.025	0.025	21.00	11.00	0.50	0.5	0.20		15
Typical	< 0.025	0.7	0.6	0.01	0.02	19.5	9.5	0.1	<0.1	0.04	0.08	8
11	to calculat											

* Ferrite calculated in accordance with DeLong diagram.

ALL-WELD MECHANICAL PROPERTIES

As-welded	Min.	Typical	Min +350°C	Typical +350°C
Tensile strength (MPa)	520	600		410
0.2% proof strength (MPa)	320	465	125	305
Elongation (%) 4d	35	47		30
5d	30	45		
Reduction of area (%)		55		60
Impact ISO-V(J) +20	°C 60 [42] *	65		

* Minimum average (minimum individual value).

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

TTTTCAE OF ERATING FARAMETERS, DC VE OR AC (OCV. SOV MIN)							
Diameter (mm)	2.5	3.2	4.0	5.0			
min. A	60	75	100	130			
max. A	90	120	155	210			
PACKAGING DATA							
Diameter (mm)	2.5	3.2	4.0	5.0			
Length (mm)	300	350	350	450			
kg/carton	11.4	13.5	13.5	16.5			
Pieces/carton	627	411	261	159			

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at $50 - 200^{\circ}$ C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°**C**.

FUME DATA

Fume	com	position	(wt	%]
------	-----	----------	-----	----

Fe	Mn	Cr	Ni	Мо	Cu	F	OES (mg/m ³)
8	5	5	0.8	-	< 0.2	16	1

ULTRAMET B308L(N)

BASIC MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode - special basic flux coated 308L electrode on high purity 304L core wire. Versatile downhand and positional capability, Ultramet B308L(N) has a controlled composition and ferrite content designed to meet the requirements of the RCC-M data sheet S 2920.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

STAINLESS STEELS

AWS A5.4M	
BS EN ISO 3581	
RCC-M	

М	E308L-15
3581	E 19 9 L B 4 2
	S 2020

ASME IX QUA	LIFICATION
QW432	F-No 5
OW442	A-Nn 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Co	Ν	FN *
Min.		0.5				18.00	9.00					5
Max.	0.035	2.0	0.90	0.025	0.025	21.00	11.00	0.50	0.5	0.20		15
Typical	0.02	1.2	0.3	0.01	0.02	19.5	9.5	0.1	<0.1	0.04	0.05	8
* Ferrite	calculater	d in accord	lance with	Del ong dia	agram							

Ferrice calculated in accordance with Defong diagram.

ALL-WELD MECHANICAL PROPERTIES

s-welded	Min.	Typical	Min +350°C	Typical +350°C
Tensile strength (MPa)	520	600		410
0.2% proof strength (MPa)	320	440	125	300
Elongation (%) 4d	35	44		30
5d	30	42		
Reduction of area (%)		55		60
Impact ISO-V(J) +20°C	60 [42] *	100		
* Minimum average (minimum individual v	ralue).			

TYPICAL OPERATING PARAMETERS DC +VE OR AC (OCV- 50V MIN)

TTERE OF ENATING FARAMETERS, DC VE OR AC (CCV. SOV MIN)								
Diameter (mm)	2.5	3.2	4.0	5.0				
min. A	60	75	100	130				
max. A	90	120	155	210				
PACKAGING DATA								
Diameter (mm)	2.5	3.2	4.0	5.0				
Length (mm)	300	350	350	450				
kg/carton	11.4	13.5	13.5	16.5				
Pieces/carton	627	411	261	159				

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (wt %)

Fe	Mn	Cr	Ni	Мо	Cu	F	OES (mg/m ³)				
8	5	5	0.8	-	< 0.2	16	1				

308S92(N)

SOLID WIRES FOR TIG

PRODUCT DESCRIPTION

Solid wire for TIG welding that meets the requirements of RCC-M data sheet S 2910.

SPECIFICATIONS		ASME I	(QUAI	LIFICATION
AWS A5.9M	ER308L	QW43	2	F-No 6
BS EN ISO 14343-A	W 19 9 L	QW44	12	A-No 8
BS EN ISO 14343-B	SS308L			
RCC-M	S 2910			

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Со	FN *
Min.		1.00	0.30			19.5	9.00				5
Max.	0.030	2.50	0.60	0.020	0.025	21.0	11.00	0.3	0.3	0.20	15
Typical	0.01	1.7	0.4	0.01	0.015	20	10	0.1	0.15	0.04	8

* Ferrite calculated in accordance with DeLong diagram.

ALL-WELD MECHANICAL PROPERTIES

As-welded	Min. +20°C	Typical +20°C	Min +350°C	Typical +350°C						
Tensile strength (MPa)	520	605		400						
0.2% proof strength (MPa)	320	465	125	290						
Elongation (%) 4d	35	48		30						
5d	30	39								
Impact ISO-V(J) +20°C	60 [42] *	160								
* Minimum average (minimum individual value).										

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
TIG	Argon	DC-	2.4	100A, 12V

PACKAGING DATA

Diameter (mm)	1.2	1.6	2.0	2.4
TIG	5kg or 15kg spool	2.5 kg tube	2.5 kg tube	2.5 kg tube

FUME DATA

MIG fume composition (wt %) (TIG and SAW fume negligible)

Fe	Mn	Cr³	Ni	Мо	Cu	OES (mg/m ³)
32	12	16	8	< 0.5	< 0.5	1

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

NUCLEAR 316L CONSUMABLES

ALLOY TYPE

316L austenitic stainless steels conforming to RCC-M for joining 316L base materials used in nuclear applications.

MATERIALS TO BE WELDED

ASTM 316L 316 316LN CF3M BS EN & DIN 1.4401 / 1.4404 1.4436 1.4406 / 1.4429 1.4408 1.4437

UNS

S 31603 S 31600 S 31653

CF8M

APPLICATIONS

Used to weld 316L (19/12/3) stainless steels for applications in the nuclear industry requiring conformance to the RCC-M code.

Standard 316L consumables for general purpose fabrication can be found in data sheet B-32. 316H consumables for elevated temperature service can be found in data sheets C-12 and C-13. Controlled ferrite 316L consumables for cryogenic applications can be found in data sheet B-38.

MICROSTRUCTURE

Austenite with a controlled level of ferrite, 5-15FN

WELDING GUIDELINES

No preheat, maximum interpass temperature 250°C; no PWHT required.

ADDITIONAL INFORMATION

Requirements are taken from the relevant consumable data sheets in the French RCC-M code.

For consumable qualification data sheets (B-90 and B-92) in accordance with RCC-M S 5142 please contact Metrode Technical Department.

RELATED ALLOY GROUPS

See data sheet B-80 for related 308L consumables conforming to the RCC-M requirements

Process	Product	Specification
	Ultramet 316L(N)	AWS E316L-16 RCC-M S 2925
MMA	Ultramet B316L(N)	AWS E316L-15 RCC-M S 2925
TIG	316592(N)	AWS ER316L RCC-M S 2915

ULTRAMET 316L(N)

RUTILE MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode – special rutile flux coated 316L electrode on high purity 304L core wire. Versatile downhand and positional capability, **Ultramet 316L(N)** has a controlled composition and ferrite content designed to meet the requirements of the RCC-M data sheet S 2925.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M	
BS EN ISO 3581	
RCC-M	

ASME IX QU	ALIFICATION
QW432	F-No 5
QW442	A-No 8

WELDING POSITIONS (ISO/ASME)

E316L-16 E 19 12 3 L R 3 2 S 2925

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Co	Ν	FN *
Min.		0.5				18.00	12.00	2.5				5
Max.	0.035	2.0	0.90	0.025	0.025	20.00	13.0	3.00	0.75	0.20		15
Typical	<0.025	0.7	0.6	0.01	0.02	19.5	12.5	2.6	<0.1	0.04	0.1	8
	to selected	1.1		the Distance	11							

* Ferrite calculated in accordance with DeLong diagram.

ALL-WELD MECHANICAL PROPERTIES

As-welded	Min.	Typical +20°C	Min +350°C	Typical +350/+360°C
Tensile strength (MPa)	520	600		470/470
0.2% proof strength (MPa)	320	500	140/130	340/340
Elongation (%) 4d	35	38		33/30
5d	30	36		
Reduction of area (%)		55		50/50
Impact ISO-V(J) +20°C	60 (42) *	65		
* Minimum average (minimum individual	value)			

* Minimum average (minimum individual value).

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

TTFICAL OF LIVATING FAILAM	LILKS, DUIVE ON AC (OUV.		
Diameter (mm)	2.5	3.2	4.0
min. A	60	75	100
max. A	90	120	155
PACKAGING DATA			
Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	350
kg/carton	11.4	12.9	13.5
Pieces/carton	618	393	261

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (wt %)

Fe	Mn	Cr	Ni	Мо	Cu	F	OES (mg/m ³)
8	5	5	1	0.5	< 0.2	16	1

ULTRAMET B316L(N)

BASIC MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode - special basic flux coated 308L electrode on high purity 304L core wire. Versatile downhand and positional capability, Ultramet B316L(N) has a controlled composition and ferrite content designed to meet the requirements of the RCC-M data sheet S 2925

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4N
BS EN ISO 3
RCC-M

5.4M	E316L-15
SO 3581	E 19 12 3 L B 4 2
	S 2925

ASME IX QUALIFICATION					
QW432	F-No 5				
QW442	A-No 8				

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Co	Ν	FN *
Min.		0.5				18.00	12.00	2.5				5
Max.	0.035	2.0	0.90	0.025	0.025	20.00	13.0	3.00	0.75	0.20		15
Typical	0.025	1.3	0.3	0.01	0.02	19.5	12.5	2.6	<0.1	0.04	0.05	10
* Ferrite	calculater	d in accord	lance with	Del ong dia	agram							

Ferrice calculated in accordance with Defong diagram.

ALL-WELD MECHANICAL PROPERTIES

As-welded	Min.	Typical +20°C	Min +350°C	Typical +350/+360°C
Tensile strength (MPa)	520	600		480/480
0.2% proof strength (MPa)	320	470	140/130	350/350
Elongation (%) 4d	30	39		30/30
5d	30	37		
Reduction of area (%)		58		50/50
Impact ISO-V(J) +20°C	60 [42] *	85		
* Minimum average (minimum individual v	ralue).			

TYPICAL OPERATING PARAMETERS DC +VE OR AC (OCV: 50V MIN)

The call of Erannia Farameters, be we or ac (oev. sovimily)							
Diameter (mm)	2.5	3.2	4.0	5.0			
min. A	60	75	100	130			
max. A	90	120	155	210			
PACKAGING DATA							
Diameter (mm)	2.5	3.2	4.0				
Length (mm)	300	350	350				
kg/carton	12.0	13.5	13.5				
Pieces/carton	669	397	397				

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (wt %)

Fe	Mn	Cr	Ni	Мо	Cu	F	OES (mg/m ³)
8	5	5	1	0.5	< 0.2	16	1

STAINLESS STEELS

316S92(N)

SOLID WIRES FOR TIG

PRODUCT DESCRIPTION

Solid wire for TIG welding that meets the requirements of RCC-M data sheet S 2915.

SPECIFICATIONS		ASME IX QUALIFICATIO
AWS A5.9M	ER316L	QW432 F-No 6
BS EN ISO 14343-A	W 19 12 3 L	QW442 A-No 8
BS EN ISO 14343-B	SS316L	
RCC-M	S 2915	

CHEMICAL COMPOSITION (WIRE WT %)

	Si	5	г	Lr	Ni	Мо	Cu	Co	FN *
1.00	0.30			18.00	12.00	2.5			5
2.50	0.60	0.020	0.025	20.00	14.00	3.00	0.3	0.20	15
1.7	0.4	0.01	0.015	19	12.5	2.6	0.15	0.04	10
	2.50 1.7	2.50 0.60	2.50 0.60 0.020 1.7 0.4 0.01	2.50 0.60 0.020 0.025 1.7 0.4 0.01 0.015	2.50 0.60 0.020 0.025 20.00 1.7 0.4 0.01 0.015 19	2.50 0.60 0.020 0.025 20.00 14.00 1.7 0.4 0.01 0.015 19 12.5	2.50 0.60 0.020 0.025 20.00 14.00 3.00	2.50 0.60 0.020 0.025 20.00 14.00 3.00 0.3 1.7 0.4 0.01 0.015 19 12.5 2.6 0.15	2.50 0.60 0.020 0.025 20.00 14.00 3.00 0.3 0.20

* Ferrite calculated in accordance with DeLong diagram.

ALL-WELD MECHANICAL PROPERTIES

As-welded		Min.	Typical +20°C	Min +350°C	Typical +350/+360°C
Tensile strength (MPa)		520	605		410/410
0.2% proof strength (MPa)		210	465	140/130	280/280
Elongation (%)	4d		48		30/30
	5d	30	33		
Impact ISO-V(J)	+20°C	60 (42) *	110		
* Minimum average (minimur	n individua	l value).			

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
TIG	Argon	DC-	2.4	100A, 12V

PACKAGING DATA

Diameter (mm)	1.6	2.4	
TIG	2.5 kg tube	2.5 kg tube	

FUME DATA

Fe	Mn	Cr³	Ni	Мо	Cu	OES (mg/m3)
32	12	16	8	< 0.5	< 0.5	3.1
MIG fume composi	ition (wt %) (TIG fur	ne negligible)				

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

NUCLEAR 309L CONSUMABLES

ALLOY TYPE

309L austenitic stainless steel electrode conforming to RCC-M for dissimilar joints in nuclear applications.

MATERIALS TO BE WELDED

Mainly used under high dilution conditions, particularly dissimilar welds between stainless and CMn steels.

APPLICATIONS

Buffer layers and clad steels: Overlays on CMn, mild steel or low alloy steels and for joining 304L/321 clad plate. Subsequent layers are deposited with an electrode chosen to match the cladding, eg 308L, 347.

Dissimilar joints: Tolerance to dilution is exploited in joining stainless types 410, 304L, 321 and 316L to mild and low alloy steels such as stiffeners, brackets and other attachments. Service temperatures above 400°C are normally avoided. It is also used for welding 12%Cr 'utility ferritics' such as Cromweld 3CR12, to itself and other steels.

MICROSTRUCTURE

Austenite with ferrite in the range 8-18FN.

WELDING GUIDELINES

Preheat and interpass temperatures depend on base material hardenability. For guidance, no preheat on mild steels; up to 250°C on hardenable steels.

ADDITIONAL INFORMATION

Requirements are taken from the relevant consumable data sheets in the French RCC-M code.

For consumable qualification data sheets (B-93, B-94 and B-95) in accordance with RCC-M S 5142 please contact Metrode Technical Department.

RELATED ALLOY GROUPS

See data sheet B-80 and B-81 for related 308L and 316L consumables conforming to the RCC-M requirements.

Process	Product	Specification
	Ultramet 309L(N)	AWS E309L-16 RCC-M S 2930
MMA	Ultramet B309L(N)	AWS E309L-15 RCC-M S 2930
TIG	309592(N)	AWS ER309L

ULTRAMET 309L(N)

RUTILE MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode - special rutile flux coated 309L electrode on high purity 304L core wire.

Versatile downhand and positional capability, Ultramet 309L(N) has a controlled composition and ferrite content designed to meet the requirements of the RCC-M data sheet S 2930.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M **BS EN ISO 3581** RCC-M

E309L-16
E 23 12 L R 3 2
S 2930

ASME IX QU	ALIFICATION
QW432	F-No 5
QW442	A-No 8

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Co	FN *
Min.		0.5				22.00	12.00				8
Max.	0.030	2.5	0.90	0.025	0.025	25.00	14.00	0.50	0.75	0.15	18
Typical	0.025	0.8	0.6	0.01	0.02	23.5	12.3	0.1	<0.1	0.04	14
* Ferrite	e calculate	d in accord	lance with I	Del ong diag	ram						

ALL-WELD MECHANICAL PROPERTIES

As-welded		Min.	Typical
Tensile strength (MPa)		520	600
0.2% proof strength (MPa)		320	485
Elongation (%)	4d	30	40
	5d	25	38
Reduction of area (%)			55
Impact ISO-V(J)	+20°C		50

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0				
min. A	60	75	100				
max. A	90	120	155				
PACKAGING DATA							
Diameter (mm)	25	3.2	4.0				

Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	350
kg/carton	12.6	13.5	13.5
Pieces/carton	687	393	252

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 - 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (wt % typical)

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m ³)
9	6	7	1	0.1	< 0.2	17	0.7

ULTRAMET B309L(N)

BASIC MMA ELECTRODE

PRODUCT DESCRIPTION

MMA electrode - special basic flux coated 309L electrode on high purity 304L core wire.

Versatile downhand and positional capability, **Ultramet 309L(N)** has a controlled composition and ferrite content designed to meet the requirements of the RCC-M data sheet S 2930.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

AWS A5.4M
BS EN ISO 3581
RCC-M

E309L-15	
E 23 12 L B 4	2
S 2930	

ASME IX QU	ALIFICATION
OW432	F-No 5

A-No 8

0W442

Typical

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	Co	FN *
Min.		0.5				22.00	12.00				8
Max.	0.030	2.5	0.90	0.025	0.025	25.00	14.00	0.50	0.75	0.15	18
Typical	0.02	1.2	0.3	0.01	0.02	23.5	12.3	0.1	<0.1	0.04	14
* Ferrite o	* Ferrite calculated in accordance with DeLong diagram.										

ALL-WELD MECHANICAL PROPERTIES

As-welded Min. Tensile strength (MPa) 520

Tensile strength (MPa)	520	620
0.2% proof strength (MPa)	320	490
Elongation (%) 4d	30	37
5d	25	35
Reduction of area (%)		55
Impact ISO-V(J) +20°C		80

TYPICAL OPERATING PARAMETERS, DC +VE OR AC (OCV: 50V MIN)

Diameter (mm)	2.5	3.2	4.0
min. A	60	75	100
max. A	90	120	155
PACKAGING DATA			
Diameter (mm)	2.5	3.2	4.0
Length (mm)	300	350	350
kg/carton	12.6	13.5	13.5
Pieces/carton	687	393	252

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 200 – 300°C/1-2h to restore to as-packed condition. Maximum 400° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 – 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUME DATA

Fume composition (wt % typical)

Fe	Mn	Cr	Ni	Мо	Cu	F *	OES (mg/m ³)
9	6	7	1	0.1	< 0.2	17	0.7

309S92(N)

SOLID WIRES FOR TIG

PRODUCT DESCRIPTION

Solid wire for TIG welding that meets the manufacturing quality requirements of RCC-M.

SPECIFICATIONS		ASME IX Q	UALIFICATION
AWS A5.9M	ER309L	QW432	F-No 6
BS EN ISO 14343-A	W 23 12 L	QW442	A-No 8
BS EN ISO 14343-B	SS309L		

CHEMICAL COMPOSITION (WIRE WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	FN *
Min.		1.00	0.30			23.0	12.0			8
Max.	0.025	2.50	0.60	0.020	0.025	25.0	14.0	0.3	0.3	18
Typical	0.01	1.7	0.4	0.01	0.015	23.5	13	0.1	0.05	12

* Ferrite calculated in accordance with DeLong diagram.

ALL-WELD MECHANICAL PROPERTIES

As-welded	min +20°C	
Tensile strength (MPa)	590	
0.2% proof strength (MPa)	450	
Elongation (%) 4d	43	
5d	41	
Impact ISO-V(J) +20°C	>200	
* Minimum average (minimum individual value).		

TTPICAL OPERATING PA	Shielding gas	Current	Diameter (mm)	Parameters
TIG	Argon	DC-	2.4	100A, 12V

PACKAGING DATA

Diameter (mm)	1.6	2.0	2.4
TIG	2.5 kg tube	2.5 kg tube	2.5 kg tube

FUME DATA

MIG fume composi	tion (wt %) (TIG fu	me negligible)				
Fe	Mn	Cr³	Ni	Мо	Cu	OES (mg/m ³)
32	12	20	11	< 0.5	< 0.5	2.5

METRODE PRODUCTS LTD HANWORTH LANE, CHERTSEY SURREY, KT16 9LL, UK Tel: +44(0)1932 566721 / Fax: +44(0)1932 565168 Email: info@metrode.com Website: www.metrode.com

NUCLEAR NAG 308L CONSUMABLES

ALLOY TYPE

308L austenitic stainless steels for joining Nitric Acid Grade (NAG) 304L base materials. The consumables are manufactured to BNFL (now Sellafield Ltd) specifications.

MATERIALS TO BE WELDED

ASTM 304L BS 304511

BS EN & DIN

1.4306

UNS

S30403

304L material that meets the specific NAG requirements.

APPLICATIONS

Used to weld **nitric acid grade (NAG) 304L stainless steels** used in the construction of waste nuclear fuel processing plant.

It is also suitable for the welding of conventional 304L stainless steels for **nuclear** applications – particularly for QA reasons where NAG and conventional 304L steels are being fabricated together.

MICROSTRUCTURE

In the as-welded condition the weld metal microstructure consists of austenite with ferrite content of about 6FN.

WELDING GUIDELINES

No preheat, maximum interpass temperature 250°C, no PWHT required.

ADDITIONAL INFORMATION

These products are approved and certified by Sellafield Ltd (SL) and are only supplied to SL contractors for use on SL projects.

Huey tests on weld deposits achieve corrosion rates of <0.3mm/year as-welded and <0.6mm/year in the sensitised condition.

RELATED ALLOY GROUPS

Standard 308L consumables for general fabrication applications are in data sheet B-30. RCC-M nuclear grade 308L consumables are in data sheet B-80

Process	Product	Specification
MMA	NAG 19.9.L.R	NF 0086/1
TIG	NAG 19.9.L	NF 0087/1

NAG 19.9.L.R

RUTILE MMA ELECTRODE FOR WELDING NITRIC ACID GRADE 304L STAINLESS STEEL

PRODUCT DESCRIPTION

MMA electrode - rutile flux coated 308L electrode on special high purity 304L core wire.

A special flux system is used to maintain carbon, sulphur and phosphorus within specified limits and also give porosity-free deposits.

All electrode sizes have optimum versatility for downhand welding with high cosmetic finish and weld metal integrity; and all positional welding with the 2.5/3.2 mm electrodes.

Recovery is about 110% with respect to core wire, 65% with respect to whole electrode.

SPECIFICATIONS

SPECIFICATIONS		ASME IX QUAL	IFICATION
AWS A5.4M	E308L-16	QW432	F-No 5
BS EN ISO 3581	E 19 9 L R 3 2	QW442	A-No 8
BNFL (now Sellafield Ltd.)	NF 0086/1		

WELDING POSITIONS (ISO/ASME)

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	W	В	FN
min.		0.2				18.0	9.0					3
max.	0.025	2.0	0.80	0.015	0.018	21.0	11.0	0.20	0.30	0.30	0.0010	10
Typical	0.02	1	0.5	0.01	0.015	19.5	10	0.05	0.1	0.01	0.0005	б

ALL-WELD MECHANICAL PROPERTIES

	KOPEKTIES				
As welded		Min.	Typical		
Tensile strength (M	/IPa]	510	590		
0.2% proof strength (N	/IPa)	320	420		
Elongation (%) 4d		35		45	
	5d	30		42	
Reduction of area	[%]			55	
Impact ISO	-V(J) +20°C		90		
OPERATING PARAMETERS	, DC +VE				
Diameter (mm)	2.5	3.2	4.0	5.0	
min. A	60	75	100	130	
max. A	90	120	155	210	
PACKAGING DATA					
Diameter (mm)	2.5	3.2	4.0	5.0	
Length (mm)	300	350	350	350	
kg/carton	12	13.5	12.9	12.9	
Pieces/carton	684	411	237	156	

STORAGE

3 hermetically sealed ring-pull metal tins per carton, with unlimited shelf life. Direct use from tin is satisfactory for longer than a working shift of 8h. Excessive exposure of electrodes to humid conditions will cause some moisture pick-up and increase the risk of porosity.

For electrodes that have been exposed:

Redry 150 - 250°C/1-2h to restore to as-packed condition. Maximum 300° C, 3 cycles, 10h total.

Storage of redried electrodes at 50 - 200°C in holding oven or heated quiver: no limit, but maximum 6 weeks recommended. Recommended ambient storage conditions for opened tins (using plastic lid): < 60% RH, > 18°C.

FUMF DATA

Fume composition (wt %) typical

Fe	Mn	Ni	Cr	Мо	Cu	F	OES (mg/m ³)
8	5	0.8	5		<0.2	16	1

NAG 19.9.L

SOLID WIRE FOR WELDING NITRIC ACID GRADE 304L STAINLESS STEEL

PRODUCT DESCRIPTION

Solid wire for TIG welding.

S
× 1
Ξ.
Ś
S
S
ш.
~
≤

SPECIFICATIONS AWS A5.9M ER308L BS EN ISO 14343-A W 19 9 L BS EN ISO 14343-B SS308L BNFL (now Sellafield Ltd.) NF 0087/1

CHEMICAL COMPOSITION (WELD METAL WT %)

	С	Mn	Si	S	Р	Cr	Ni	Мо	Cu	W	В
min.		1.0				19.5	9.0				
max.	0.025	2.0	0.65	0.015	0.018	22.0	11.0	0.20	0.30	0.30	0.0010
Typical	0.015	1.7	0.3	0.004	0.015	20	10	0.1	0.07	0.02	0.0003

ALL-WELD MECHANICAL PROPERTIES

As welded		TIG	
Tensile strength (MPa)		605	
0.2% proof strength (MPa)		465	
Elongation (%)	4d	48	
	5d	39	
Impact ISO-V(J)	- 20°C	160	

TYPICAL OPERATING PARAMETERS

	Shielding gas	Current	Diameter (mm)	Parameters
TIG	Argon	DC-	2.4	100A, 12V

PACKAGING DATA

Diameter (mm)	0.8	1.2	1.2	1.6	2.4	3.2
TIG	1kg or 5kg spool	5kg or 15kg spool	2.5 kg tube	2.5 kg tube	2.5 kg tube	2.5 kg tube

ASME IX QUALIFICATION

A-No 8

0W432 F-No 6

QW442